Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Blockchain technology is used to support digital assets such as cryptocurrencies and tokens. Commonly, smart contracts are used to generate tokens on top of the blockchain network. There are two fundamental types of tokens: fungible and non-fungible (NFTs). This paper focuses on NFTs and offers a technique to spot plagiarism in NFT images. NFTs are information that is appended to files to produce distinctive signatures. It can be found in image files, real artifacts, literature published online, and various other digital media. Plagiarism and fraudulent NFT images are becoming a big concern for artists and customers. This paper proposes an efficient deep learning-based approach for NFT image plagiarism detection using the EfficientNet-B0 architecture and the Triplet Semi-Hard Loss function. We trained our model using a dataset of NFT images and evaluated its performance using several metrics, including loss and accuracy. The results showed that the EfficientNet-B0-based deep neural network with triplet semi-hard loss outperformed other models such as Resnet50, DenseNet, and MobileNetV2 in detecting plagiarized NFTs. The experimental results demonstrate sufficient to be implemented in various NFT marketplaces.

Details

Title
NFT Image Plagiarism Check Using EfficientNet-Based Deep Neural Network with Triplet Semi-Hard Loss
Author
Aji Teguh Prihatno 1   VIAFID ORCID Logo  ; Suryanto, Naufal 1   VIAFID ORCID Logo  ; Oh, Sangbong 1 ; Thi-Thu-Huong Le 2   VIAFID ORCID Logo  ; Kim, Howon 1   VIAFID ORCID Logo 

 School of Computer Science and Engineering, Pusan National University, Busan 609735, Republic of Korea 
 Blockchain Platform Research Center, Pusan National University, Busan 609735, Republic of Korea; IoT Research Center, Pusan National University, Busan 609735, Republic of Korea 
First page
3072
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785184898
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.