Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents the first approach to a current control problem for the direct matrix converter (DMC), which makes use of the deep reinforcement learning algorithm. The main objective of this paper is to solve the real-time capability issues of traditional control schemes (e.g., finite-set model predictive control) while maintaining feasible control performance. Firstly, a deep Q-network (DQN) algorithm is utilized to train an agent, which learns the optimal control policy through interaction with the DMC system without any plant-specific knowledge. Next, the trained agent is used to make computationally efficient online control decisions since the optimization process has been carried out in the training phase in advance. The novelty of this paper lies in presenting the first proof of concept by means of controlling the load phase currents of the DMC via the DQN algorithm to deal with the excessive computational burden. Finally, simulation and experimental results are given to demonstrate the effectiveness and feasibility of the proposed methodology for DMCs.

Details

Title
A Novel Deep Reinforcement Learning-Based Current Control Method for Direct Matrix Converters
Author
Yao, Li  VIAFID ORCID Logo  ; Qiu, Lin; Liu, Xing; Ma, Jien  VIAFID ORCID Logo  ; Zhang, Jian; Fang, Youtong
First page
2146
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785193930
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.