Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Single-leg landing is one of the maneuvers that has been linked to non-contact anterior cruciate ligament (ACL) injuries, and wearing knee braces has been shown to reduce ACL injury incidence. The purpose of this study was to determine whether wearing a knee brace has an effect on muscle force during single-leg landings at two heights through musculoskeletal simulation. Eleven healthy male participants, some braced and some non-braced were recruited to perform single-leg landings at 30 cm and 45 cm. We recorded the trajectories and ground reaction forces (GRF) using an eight-camera motion capture system and a force platform. The captured data were imported into the generic musculoskeletal model (Gait2392) in OpenSim. Static optimization was used to calculate the muscle forces. The gluteus minimus, rectus femoris, vastus medialis, vastus lateralis, vastus medialis medial gastrocnemius, lateral gartrocnemius, and soleus muscle forces were all statistically significant different between the braced and non-braced participants. Simultaneously, increasing the landing height significantly affected the gluteus maximums, vastus medialis, and vastus intermedia muscle forces. Our findings imply that wearing a knee brace may alter muscle forces during single-leg landings, preventing ACL injuries. Additionally, research demonstrates that people should avoid landing from heights due to the increased risk of knee injuries.

Details

Title
The Effect of a Knee Brace on Muscle Forces during Single-Leg Landings at Two Heights
Author
Wang, Yubin 1   VIAFID ORCID Logo  ; Liu, Haibin 2   VIAFID ORCID Logo  ; Wei, Huidong 3 ; Wu, Chenxiao 2   VIAFID ORCID Logo  ; Yuan, Feijie 2 

 School of Sport and Health Science, Dalian University of Technology, Dalian 116024, China; College of General Aviation and Flight, Nanjing University of Aeronautics and Astronautics, Nanjing 213300, China 
 School of Sport and Health Science, Dalian University of Technology, Dalian 116024, China 
 College of General Aviation and Flight, Nanjing University of Aeronautics and Astronautics, Nanjing 213300, China 
First page
4652
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
1661-7827
e-ISSN
1660-4601
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785202385
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.