1. Introduction
Since its first definition, introduced in 1989 as an age-associated loss of muscle mass, the definition of sarcopenia has been gradually refined [1]. In 2010, 2011, and 2014, the European Working Group On Sarcopenia (namely EWGOS 1), the International Working Group on Sarcopenia (IWGS), and the Asian Working Group on Sarcopenia (AWGS 1) agreed to define sarcopenia as a syndrome characterized by an age-related loss of skeletal muscle mass (quantitatively assessed by the skeletal muscle index (SMI) or appendicular skeletal muscle mass (ASM) using CT scan, and bioelectrical impedance analysis (BIA) or dual-energy X-ray absorptiometry (DXA) methods), and by loss of function (loss of muscle strength and/or physical performance) using a screening-based approach targeting gait speed measurement [2,3,4]. In 2019, the AWGS updated the threshold values of the operational criteria (then termed AWGS 2). The EWGOS definition was also updated (EWGOS 2), now defining sarcopenia as a muscle disease characterized by the association of low levels of muscle strength (handgrip strength) and low muscle mass, with low physical performance (typically slow gait speed) becoming an indicator of severity [5,6]. In addition, the condition does not affect solely older adults ≥65 years and it has now been recognized that sarcopenia can begin earlier in life. In particular, sarcopenia is considered as primary or age-related, and as secondary when a specific cause (mainly driven by inflammatory processes) is evidenced (Table A1).
Cancer is frequently considered to be a major cause of secondary sarcopenia. In our previous systematic review including 35 observational studies or clinical trials and 6894 patients with cancer before 2016, sarcopenia concerned 38.6% of patients before cancer treatment [7]. We found that pre-therapeutic sarcopenia (PS) was associated with poor survival rates, post-operative complications and chemotherapy-related toxicities during cancer treatment, but with a strong between-study heterogeneity with respect to cancer site or extension and the definitions of sarcopenia. Since this review, with the arrival of immune-therapies and an update in the consensuses, there has been a considerable increase in the number of additional studies among cancer patients, but no comprehensive analysis has been conducted to date.
We therefore aimed to update our previous systematic review and to decipher heterogeneity in the prevalence of PS and its predictive values for overall survival, progression-free survival, post-operative complications, treatment-related toxicities, disability, and nosocomial infections among cancer patients using a meta-analysis including research published before 2022.
2. Materials and Methods
We followed the recommendations of the preferred reporting items for systematic reviews and meta-analyses (PRISMA) method for reporting this systematic review with meta-analysis [8]. The protocol was registered on 6 February 2023 and is available on the OSF platform:
2.1. Information Sources
This meta-analysis was based on a systematic, comprehensive search on MEDLINE via PubMed for articles published in English or French from 31 March 2016 to 31 December 2021. Due to a considerable increase in the number of studies addressing sarcopenia among cancer patients, we chose only to consult the PubMed database. The following research algorithm was used: sarcopenia AND (cancer OR tumors OR malignancies) AND (death OR overall survival OR progression-free survival OR relapse OR chemotherapy OR targeted therapy OR radiotherapy OR hormonal therapy OR surgery OR immunotherapy OR toxicity OR disability OR infection) AND human NOT review NOT letter. All articles retrieved from our previous systematic review were also included [7].
2.2. Search Strategy
For this meta-analysis, the following issues were addressed:
(a). What is the most commonly encountered definition of PS among patients with cancer?
(b). What is the pooled prevalence of PS among patients with cancer, and what is the prevalence according to the definition of sarcopenia?
(c). What are the mean differences in muscle strength (i.e., grip-strength) and physical performance (i.e., gait speed) between sarcopenic and non-sarcopenic groups of patients with cancer?
(d). What is the predictive value of PS for overall survival (OS) and progression-free survival (PFS) among patients with cancer?
(e). What is the predictive value of PS for severe post-operative complications (POC) among patients with cancer?
(f). What is the predictive value of PS for severe treatment-related toxicities and/or dose-limiting toxicities (TOX) among patients with cancer?
(g). What is the predictive value of PS for disability and nosocomial infections (NI) among patients with cancer?
To answer these questions, we pre-defined eligibility criteria for the articles: patients (adults 18 y and over with cancer), intervention (pre-therapeutic sarcopenia assessed using a consensual measurement), comparator (sarcopenia vs. no sarcopenia), outcomes (prevalence of sarcopenia, OS and PFS, severe post-operative complications defined as a Clavien–Dindo scale score ≥ 3a, ≥grade 3 treatment-related toxicities (CTCAE) and/or dose-limiting toxicities, disability defined in terms of an activities of daily living score (ADL) of ≤5/6, and nosocomial infections defined as hospital-acquired infections), and study design (clinical trials, prospective or retrospective studies with consecutive inclusions) (PICOS) criteria.
2.3. Selection Process
Articles meeting the eligibility criteria were first selected on the basis of titles and abstracts (FP) then on the basis of perusal of the full text by 5 independent groups (PBR/MF, ALC/CM, SM/RG, FP/JP, EL/ZapT, and EP/AN/MP). The term sarcopenia was to be clearly defined in the articles. If several articles reported similar results, only the article with the most complete information was retained. Duplicates were screened for and removed. Disagreements were resolved by consensus in each reviewing group.
2.4. Data Collection
The data recorded included publication date, country, study design, follow-up time, number of patients, number of men and women, cancer site, cancer extension (classified as local, locally advanced, or metastatic), treatment modes, mean or median age at inclusion, the definition of sarcopenia used (low muscle mass quantity only or consensus-based algorithm), cut-off values for quantitative muscle mass indices (arm muscle area (AMA, cm2), ASM (kg/m2), psoas muscle index (PMI, cm2/m2), SMI (cm2/m2) or total psoas area (TPA, cm2)), muscle strength assessed by handgrip-strength (kg), physical performance assessed by gait speed (m/s), number of sarcopenic patients, number of sarcopenic men and women, number of sarcopenic patients with a body mass index ≥30 kg/m2 (i.e., sarcopenic obesity), and finally the outcomes associated with either the PS values (%) or the hazard ratios or the odds ratios.
2.5. Meta-Analysis Endpoints
The primary endpoint was the pooled prevalence of PS among cancer patients.
The secondary endpoints were: mean differences in handgrip strength (kg) and gait speed (m/s) between sarcopenic and non-sarcopenic patients; OS; PFS; grade ≥ 3a post-operative complications (Clavien-Dindo scale); grade ≥ 3 treatment-related toxicities (CTCAE) and/or dose-limiting toxicities; ADL-score ≤ 5/6; and hospital-acquired infections.
2.6. Quality Assessment
We used the Newcastle–Ottawa quality assessment scale (NOS) designed for cohort studies which was the case for all patients, even for those recruited from RCTs [9]. Based on a risk-of-bias assessment, this scale rates the quality of studies with scores ranging from 0 to 9. The quality of the studies was classified as good (≥7), fair (4–6), or poor (0–3).
2.7. Effect Measures
The prevalence of PS was summarized as a pooled prevalence with 95% confidence interval (95% CI) using logit transformation.
Handgrip strength and gait speed were summarized as a pooled mean difference (MD) with 95% CI with reference to non-sarcopenic patients using the inverse variance method.
OS and PFS were summarized as a pooled risk ratio (RR) with 95% CI with reference to non-sarcopenic patients using the inverse variance method.
The remaining outcomes were summarized as a pooled RR with 95% CI with reference to non-sarcopenic patients using the Mantel–Haenszel method.
2.8. Synthesis Method
The data were analyzed using R statistical software (version 4.1.0; R Foundation for Statistical Computing, Vienna, Austria;
Regarding the study characteristics, categorical variables were summarized as the numbers (%), and continuous variables were summarized as the means ± standard deviation (SD) or medians [Q1–Q3] as appropriate. The studies were described in descending order according to their publication date.
To detect a non-linear relationship between sarcopenia prevalence and the muscle mass indices (using reported cut-off values), we used a non-parametric regression via smoothing splines when possible.
On the basis of the selected articles, and given that between-study heterogeneity was expected, we performed a meta-analysis with random-effect models (with the package “meta”) to assess the prevalence of PS, the mean difference in muscle strength and physical performance indices (grip strength and gait speed), and the predictive value of PS for OS, PFS, Clavien–Dindo scale ≥grade 3 for POC, ≥grade-3 for TOX, disability (ADL score ≤ 5/6), and NI among cancer patients. As there was a single study addressing disability, we did not conduct a meta-analysis on this outcome. With regard to the prevalence of PS (first endpoint), we first ran a funnel plot to detect graphical asymmetry. Statistically, the funnel plot asymmetry was assessed using the Peters’ test, which is appropriate for meta-analyses of single proportion. We addressed the heterogeneity of the study results using the I2 indicator and the Cochran’s Q test. I2 values of 0%, 25%, 50%, and 75% were considered to indicate none, low, moderate, and high heterogeneity, respectively. A p value ≤ 0.05 in the Q test indicated a significant heterogeneity. Due to the heterogeneous nature of sarcopenia and the variety of the contexts assessed, we anticipated the need for subgroup analyses according to a sensitivity analysis, excluding studies over the 95% confidence interval from the funnel plot, according to the following: study quality (good, fair or poor), the mean or median age at inclusion classified as < or ≥65 y, sex, BMI (< or ≥30 kg/m2), cancer site, cancer extension, treatment mode, definition of sarcopenia (low muscle mass quantity only or consensus-based algorithm), and the cut-off values for muscle mass indices. We also considered post hoc subgroup analyses according to the publication date (2008–2012, 2013–2017, and 2018–2022), the number of patients included (<100, 100–200, 200–400, and ≥400), and world regions (Asian vs. non-Asian).
To decipher the factors that could explain heterogeneity, we then ran a multivariate meta-regression with a mixed-effect model for the first endpoint (prevalence). Factors (study groups) yielding p values under 0.20 in the univariate analysis were considered for inclusion in the multivariate analysis. A backward selection process of the highest p values was performed to retain the final multivariate model.
3. Results
3.1. Study Selection and Quality Rating of the Studies Included
As of 31 December 2021, including the final publications in 2022, the comprehensive search yielded 1318 articles potentially eligible for this review (Figure A1). After excluding non-eligible articles, 226 remained for review and meta-analysis, dated from 2008 to 2022 as follows: 5 in 2022 [10,11,12,13,14], 60 in 2021 [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74], 36 in 2020 [75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110], 31 in 2019 [111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141], 29 in 2018 [142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170], 18 in 2017 [171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187], 15 in 2016 [188,189,190,191,192,193,194,195,196,197,198,199,200,201,202], 15 in 2015 [203,204,205,206,207,208,209,210,211,212,213,214,215,216,217], 2 in 2014 [218,219], 5 in 2013 [220,221,222,223,224], 6 in 2012 [225,226,227,228,229,230], none in 2011, 1 in 2010 [231], 2 in 2009 [232,233], and 1 in 2008 [234] (Table 1).
According to the NOS score, 151/226 studies (67%) were rated as good quality (NOS ≥ 7) meaning there was a low risk of bias (Table 1).
3.2. Patient and Study Characteristics
In all, 65,936 patients were included in this meta-analysis with sample sizes ranging from 16 to 6447 patients (Table 1). Overall, 118 studies were retrospective, 95 were prospective, and 13 were clinical trials. The studies were mainly from Asia, Europe, and North-America, while only two studies were from Africa [75,101]. The follow-up time ranged from 0 to 200 months. The mean or median age at inclusion ranged from 45.7 to 85 y. Thirty-three per cent (17,295/65,936) of the patients had a mean or median age at inclusion ≥65 years. A total of 419/65,936 patients had a mean or median age at inclusion ≥75 years. Most of the studies also included patients younger than 65 years (64%, 30,691/47,986 patients), Asians (51%, 33,453/65,936), men (66%, 30,424/46,265), and with a body mass index < 30 kg/m2 (69.5%, 2628/8627). The studies mainly included cancers in various sites (22%, 14,600/65,936), gastric (20.5%, 13,513/65,936), or colorectal (17%, 11,419/65,936), and with various extensions (82%, 54,269/65,936). The treatment modes observed were mainly surgery (61%, 40,486/65,936), chemotherapy (6%, 4169/65,936), immune therapy (1%, 909/65,936), and targeted therapy (1%, 634/65,936).
3.3. Definition of Sarcopenia among Cancer Patients
Sarcopenia was mainly defined from muscle mass measurement only (190/226 studies, 84%), from CT scan (n = 178), BIA (n = 11), or DXA (n = 1) (Table 1). Sixteen studies did not specify the muscle mass index used [43,45,68,85,86,95,96,120,122,123,139,141,147,148,186,207]. Of the 210 remaining studies, regardless of the sarcopenia definition used, the SMI by CT scan at lumbar three was the main muscle mass quantity index used (171/210, 81.5%) followed by the ASM (21/210, 10%), the PMI (13/210, 6%), the TPA (4/210 studies, 2%), and the AMA (1/226 studies, 0.5%). The SMI cut-off values ranged from 29.0 to 48.4 cm2/m2 (37 thresholds in all) for women (median [Q1–Q3] = 38.5 [37.5–41.0]), and from 36.0 to 68.9 cm2/m2 (43 thresholds in all) for men (median [Q1–Q3] = 47.3 [43.0–52.4]).
From 2015 to the present, of the 36 studies applying a consensus-based algorithm definition of sarcopenia, 17, 9, 6, and 2 studies respectively used the AWGS1, the EWGOS2, the EWGOS1, and the AWGS2 guidelines. The IWGS was not used.
3.4. PS Is Prevalent among Cancer Patients
All the studies were used to assess the prevalence. The pooled prevalence of PS among cancer patients was 38.0% (95% CI: 36.0–41.0) with a high between-study heterogeneity (I2 = 97%) (Table 2). Figure A2 shows a significant funnel plot asymmetry (p < 0.0001).
Although the sensitivity analysis excluding studies over the 95% confidence interval from the funnel plot (n = 137 studies) led to less heterogeneity (I2 = 66%), the 40.5% prevalence was not significantly different (p = 0.11).
The prevalence was significantly lower (p < 0.01) for consensus-based algorithm definitions of sarcopenia (22.0%) than for definitions based on muscle mass measures only (42.0%).
Using the muscle mass measurement-based definition only, the prevalence differed significantly (p < 0.01), ranging from 12.0% (AMA) to 40.0% (SMI). Above the SMI medians of 38.5 cm2/m2 and 47.3 cm2/m2 for women and men, respectively, the prevalence was 47.0% and 52.0%. Figure 1 shows the smoothing splines for the relationship between the prevalence of sarcopenia and muscle mass index measures for women and men (SMI, ASM, and PMI). Regarding SMI, up to the third quartiles of 41.0 cm2/m2 and 52.4 cm2/m2 for women and men, respectively, the association was linear with a tight confidence interval. Regarding ASM, the association was paradoxical for both women and men. For PMI, the association was strictly linear for women and men, but it resulted in a large confidence interval.
Depending on the cancer site, the prevalence varied very significantly from 24.0% (gastric) to 79.0% (small cell lung). In relation to cancer extension, the prevalence varied significantly from 39.0% (local) to 46.0% (metastatic). According to the treatment mode, the pre-therapeutic prevalence of sarcopenia varied significantly from 33.0% (surgery) to 68% (intra-arterial infusion for hepatocellular carcinoma). In the 26 studies that reported prevalence according to BMI, the prevalence of sarcopenic obesity was significantly lower (p < 0.01) (19.0%) than for non-sarcopenic obesity (39.0%). The prevalence did not differ significantly with study quality, the year of publication, the world region, the age-threshold of 65 years at inclusion, or sex.
In multivariate meta-regression, consensus-based algorithm definitions of sarcopenia (as opposed to loss of muscle mass only), a sample size ≥ 400, and SMI based on CT scan cut-off values for women (not for men) as continuous variables were independently and significantly associated with the prevalence results (Table A2).
3.5. Muscle Strength and Physical Performance among Cancer Patients with Sarcopenia
Twelve studies including 3466 patients provided data on muscle strength and physical performance. Handgrip strength values among sarcopenic patients ranged from 17.7 to 22.6 kg and gait speed values among sarcopenic patients ranged from 0.72 to 1.00 m/s [26,51,58,111,138,145,169,177,179,187,206,216]. Figure 2 summarizes the mean differences in handgrip strength and gait speed between sarcopenic and non-sarcopenic patients.
For handgrip strength, the pooled mean difference was −8.62 kg with a high between-study heterogeneity (I2 = 91%). Regarding gait speed, the pooled mean difference was −0.19 m/s with a moderate between-study heterogeneity (I2 = 68%).
3.6. Pre-Therapeutic Sarcopenia Is Associated with OS and PFS among Cancer Patients
Based on 101 studies including 28,995 patients, we found a strong, significant association between pre-therapeutic sarcopenia and OS with a pooled RR of 1.97 [1.79–2.17] and with a high between-study heterogeneity (I2 = 85%, p < 0.01). Subgroup analyses are presented in Table 3 and Figure A3, showing a reduction in heterogeneity. The effect measure differed significantly (p < 0.01) according to sample size, world region, cancer site, and muscle mass index, while no significant differences were found for sensitivity analysis, study quality, year of publication, age threshold of 65 years at inclusion, cancer extension, treatment mode, and definition of sarcopenia. When low between-study heterogeneity was envisaged (i.e., I2 < 50%), the greatest effects were associated with the PMI-based muscle index (RR = 2.76 [2.21–3.43]), bile duct cancers (RR = 2.71 [1.87–3.92]), and the consensus-based algorithm definitions of sarcopenia (RR = 2.31 [1.97–2.72]).
For 29 studies including 6546 patients, we found a strong and significant association between pre-therapeutic sarcopenia and PFS with a pooled RR of 1.76 [1.44–2.16] and a high between-study heterogeneity (I2 = 85%, p < 0.01). Subgroup analyses are presented in Table 4 and Figure A4, showing a reduction in heterogeneity. The effect measure differed significantly (p < 0.01) according to the world region, cancer site, sarcopenia definition, and muscle mass index used, while no significant differences were found for sensitivity analysis, study quality, year of publication, sample size, age threshold of 65 years at inclusion, cancer extension, or treatment mode. When low between-study heterogeneity was envisaged (i.e., I2 < 50%), the most marked effects were associated with the consensus-based algorithm definitions of sarcopenia (RR = 3.59 [2.17–5.92]) and non-small cell lung cancer (RR = 2.43 [1.90–3.12]).
3.7. Pre-Therapeutic Sarcopenia Is Predictive of Severe Postoperative Complications among Cancer Patients
Based on 56 studies including 17,172 patients, we found a strong and significant association between pre-therapeutic sarcopenia and severe post-operative complications, with a pooled RR of 2.70 [2.33–3.12] involving a moderate heterogeneity (I2 = 72%). Subgroup analyses are presented in Table 5 and Figure A5, showing a reduction in heterogeneity. The effect measure differed significantly (p < 0.01) according to sensitivity analysis, year of publication, sample size, world region, cancer site, and sarcopenia definition, while no significant differences were found for study quality, the age threshold of 65 years at inclusion, cancer extension, or muscle mass index. When low between-study heterogeneity was envisaged (i.e., I2 < 50%), the most marked effects were associated with the consensus-based algorithm definitions of sarcopenia (RR = 3.62 [2.79–4.69]) and gastric cancer (RR = 3.09 [2.42–3.93]).
3.8. Pre-Therapeutic Sarcopenia Is Predictive of Severe Treatment-Related Toxicity and/or Dose-Limiting Toxicity among Cancer Patients
Based on 19 studies including 2980 patients, we found a significant association between pre-therapeutic sarcopenia and severe treatment-related toxicities and/or dose-limiting toxicities, with a pooled RR of 1.47 [1.17–1.84] involving a moderate heterogeneity (I2 = 71%). Subgroup analyses are presented in Table 6 and Figure A6, showing a reduction in heterogeneity. The effect measure differed significantly (p < 0.01) according to study quality, sample size, cancer site, cancer extension, and definition of sarcopenia, while no significant differences were found for sensitivity analysis, year of publication, world region, age threshold of 65 years at inclusion, or treatment mode. When low between-study heterogeneity was envisaged (i.e., I2 < 50%), the most marked effects were associated with breast cancer (RR = 2.93 [1.82–4.73]), head and neck cancer (RR = 2.47 [1.65–3.69]), chemotherapy (RR = 1.98 [1.55–2.54]), and targeted therapy (RR = 1.63 [1.05–2.54]).
3.9. Pre-Therapeutic Sarcopenia Is Associated with Disability among Cancer Patients
Only one study including 131 patients was found on the association between pre-therapeutic sarcopenia and disability (ADL ≤ 5/6) [160]. In this single-center prospective study including 40.5% of patients aged ≥ 75 years with cancers in various sites and with different extensions, baseline disability was noted for 30.5% of the patients. Compared to normal muscle mass and non-severe sarcopenia, severe sarcopenia is defined according to the EWGOS1 by low muscle mass (CT scan-based SMI), and both low handgrip strength and slow gait speed were significantly (p < 0.001) associated with disability (90% vs. 26% of patients) in univariate analysis.
3.10. Pre-Therapeutic Sarcopenia Is Predictive of Nosocomial Infections among Cancer Patients
Based on 22 studies including 6246 patients, we found a strong, significant association between pre-therapeutic sarcopenia and nosocomial infections with a pooled RR of 1.76 [1.41–2.22] and moderate heterogeneity (I2 = 58%). Subgroup analyses are presented in Table 7 and Figure A7, showing a reduction in heterogeneity. The effect measure differed significantly (p < 0.01) according to sensitivity analysis, sample size, age threshold of 65 years at inclusion, cancer site, and definition of sarcopenia, while no significant differences were found for study quality, year of publication, world region, cancer extension, treatment mode, or muscle mass index. When low between-study heterogeneity was envisaged (i.e., I2 < 50%), the most marked effects were associated with gastric cancer (RR = 2.55 [1.88–3.46]) and a sample size ≥ 400 (RR = 2.26 [1.66–3.07]).
4. Discussion
In this meta-analysis including 226 articles and 65,936 patients with various cancers, various extensions, and various treatment modes, PS was mainly defined as a loss of muscle mass using the SMI on CT scan-based assessment. PS was highly prevalent and was strongly associated with OS, PFS, POC, TOX, and NI during cancer treatment, with pooled relative risks ranging from 1.50 (toxicities) to 2.70 (post-operative complications).
To date, and despite successive sarcopenia consensus-based definitions of sarcopenia provided since 2010, the definition of sarcopenia mainly relies only on loss of muscle mass quantity among cancer patients. The standardized use of CT scans in pre-therapeutic oncological settings probably explains this. Unlike the ASM and the PMI indices, the SMI muscle mass index was linearly associated with the prevalence of sarcopenia for both women and men and had the tightest confidence interval, suggesting that it is probably the most suitable index for the quantification of muscle mass. However, homogeneous optimal cut-off thresholds remain to be clarified in the oncological setting.
As expected, we found great heterogeneity for all endpoints addressed here. Consistent with our previous review, the pooled prevalence of pre-therapeutic sarcopenia concerned 38% of cancer patients [7]. Using a multivariate meta-regression, we were able to identify sources of between-study heterogeneity as follows: consensus-based algorithm definitions of sarcopenia (as opposed to loss of muscle mass only), a powerful sample size (≥400), and the cut-off values of CT scan-based SMI for women (not for men) as continuous variables were independently and significantly associated with the prevalence results for pre-therapeutic sarcopenia. With respect to the prevalence results according to cancer localisation, our results require caution given the impact of the definition used. Strikingly, compared with definitions based on loss of muscle mass only (SMI), consensus-based algorithm definitions of sarcopenia reduced the prevalence significantly (42% vs. 22%), decreasing heterogeneity and increasing the predictive value for OS (RR = 1.85 vs. 2.31), PFS (RR = 1.61 vs. 3.59), post-operative complications (RR = 1.48 vs. 3.62), and nosocomial infections (RR = 1.85 vs. 2.49). This discrepancy could be explained by the additional criteria used for consensus algorithms, which consider both loss of muscle strength and/or physical performance and muscle mass. Indeed, it is known that grip strength and gait speed are independent factors associated with survival among cancer patients [236].
Surprisingly, except for nosocomial infections, we did not identify any significant difference for prevalence of sarcopenia, OS, PFS, post-operative complications, or severe treatment-related toxicities according to the age threshold of 65. This result highlights the leading role played by cancer (mainly due to cancer-related inflammatory processes) rather than age alone in promoting sarcopenia (namely secondary sarcopenia) and its clinical impact on adverse outcomes [6].
To our knowledge, although it was not performed on individual data, this is the largest and most powerful meta-analysis on this topic. It contains a stringent methodology, bringing together oncologists, geriatricians, and methodologists using data from many countries in numerous cancer settings, enabling us to provide a comprehensive up-to-date review of sarcopenia prevalence and its clinical impact in the course of cancer treatment. In particular, in a cancer setting we were able to highlight an association between pre-therapeutic sarcopenia and PFS on the one hand, and between pre-therapeutic sarcopenia and nosocomial infections on the other, subjects that have been studied infrequently to date. However, there are still insufficient data to provide a synthesis regarding the association between pre-therapeutic sarcopenia and disability.
On the basis of the findings of our meta-analysis, there clearly is an urgent need to agree on an operational definition of sarcopenia in oncological settings to improve study comparability. Given both the high prevalence and the strong clinical impact of pre-therapeutic sarcopenia during cancer treatment, we suggest that its detection should occur as early as possible. In agreement with the EWGOS 2 consensus, we support the use of the simple SARC-F (strength, assistance with walking, rise from a chair, climb stairs, and falls) screening tool, which has been previously validated in older cancer patients [237]. The early detection of sarcopenia can help to initiate early muscle rehabilitation combining protein supplementation and resistance exercise training in order to improve the healthcare trajectories during cancer treatment [238]. Finally, we encourage the use of sarcopenia as a stratification variable in the development of future clinical trial designs in oncology.
5. Conclusions
Using the findings of the largest and the most powerful meta-analysis on this topic to date, we conclude that pre-therapeutic sarcopenia among cancer patients, mainly defined as a loss of muscle mass quantity, is prevalent and strongly associated with OS, PFS, severe post-operative complications, severe treatment-related toxicities and/or dose-limiting toxicities, and nosocomial infections. We stress the need to agree on a consensual definition of sarcopenia in oncological settings.
Conceptualization, E.P. and F.P.; methodology, F.P.; software, F.P.; validation, A.-L.C., E.L., P.B.-R., J.P., M.F., C.M., S.M., R.G., Z.a.T., A.N., M.P., C.B., E.P. and F.P.; formal analysis, F.P.; investigation, A.-L.C., E.L., P.B.-R., J.P., M.F., C.M., S.M., R.G., Z.a.T., A.N., M.P., E.P. and F.P.; resources, A.-L.C., E.L., P.B.-R., J.P., M.F., C.M., S.M., R.G., Z.a.T., A.N., M.P., E.P. and F.P.; data curation, A.-L.C., E.L., P.B.-R., J.P., M.F., C.M., S.M., R.G., Z.a.T., A.N., M.P., E.P. and F.P.; writing—original draft preparation, A.-L.C., E.L., P.B.-R., E.P. and F.P.; writing—review and editing, A.-L.C., E.L., P.B.-R., J.P., M.F., C.M., S.M., R.G., Z.a.T., A.N., M.P., C.B., E.P. and F.P.; visualization, A.-L.C., E.L., P.B.-R., J.P., M.F., C.M., S.M., R.G., Z.a.T., A.N., M.P., C.B., E.P. and F.P.; supervision, A.-L.C., E.L., P.B.-R., E.P. and F.P. All authors have read and agreed to the published version of the manuscript.
Not applicable.
Not applicable.
The data presented in this study are available upon request from the corresponding author.
We thank the French Society of Geriatric Oncology (SoFOG) which supported this work. We thank Angela Swaine and Sarah Leyshon for revising the English language in the manuscript.
The authors declare no conflict of interest.
Footnotes
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Figure 1. Non-parametric regression via smoothing splines for assessing the relationship between prevalence of pre-therapeutic sarcopenia and cut-off values of SMI (A,B), ASM (C,D), or PMI (E,F) in women and men with cancer, respectively.
Figure 2. Pooled mean differences (MD) of handgrip strength (A, kg) and gait speed (B, m/s) between sarcopenic and non-sarcopenic groups among cancer patients [26,51,58,111,138,145,169,177,179,187,206,216].
Study characteristics.
Reference | Asia (Y/N) | Recruitment |
Follow-Up (m) | Patients | Site | Extension | Treatment | Mean or Median Age (y) | Definition of Sarcopenia/Muscle Mass Index | Sarcopenia | Over the 95% CI (Y/N) | NOS |
||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | M | F | Total | M | F | |||||||||||
Takagi A et al., 2022 [ |
Y | P | 1.0 | 114 | 74 | 40 | Various | Various | Various | 68.4 | CT scan/SMI | 57 | NA | NA | N | G |
Lu JL et al., 2022 [ |
Y | P | 0.0 | 260 | 196 | 64 | Gastric | Locally advanced | Surgery | 62.4 | EWGOS 2/ASM | 41 | 22 | 19 | Y | G |
Deluche E et al., 2022 [ |
N | P | 1.0 | 139 | 2 | 137 | Breast | Metastatic | Various | 61.2 | EWGOS 1/SMI | 41 | 1 | 40 | N | F |
Tagliafico AS et al., 2022 [ |
N | P | 200.0 | 74 | 37 | 37 | Myeloma | Metastatic | Chemotherapy | 60.8 | CT scan/SMI | 18 | 6 | 12 | Y | G |
Orzell S et al., 2022 [ |
N | P | 72.0 | 251 | 191 | 58 | Head and neck | Various | Surgery | 67.4 | EWGOS 2/SMI | 39 | 21 | 18 | Y | G |
Bajric T et al., 2021 [ |
N | RP | 63.6 | 355 | 135 | 220 | Colorectal | Metastatic | Surgery | 68.0 | CT scan/SMI | 78 | 65 | 13 | Y | F |
Cárcamo L. et al., 2021 [ |
N | RP | 72.0 | 359 | 193 | 166 | Colorectal | Various | Surgery | 64.0 | CT scan/SMI | 85 | NA | NA | Y | G |
Catanese S et al., 2021 [ |
N | RP | 87.6 | 78 | 56 | 22 | Gastric | Metastatic | Various | 67.0 | CT scan/SMI | 34 | 22 | 12 | N | G |
Chai VW et al., 2021 [ |
N | RP | 12.0 | 228 | 139 | 89 | Colorectal | Various | Surgery | 69.0 | CT scan/SMI | 36 | 24 | 12 | Y | G |
Chang YR et al., 2021 [ |
Y | RP | 141.6 | 109 | 63 | 46 | Sarcoma | Metastatic | Targeted therapy | 61.0 | CT scan/PMI | 25 | NA | NA | Y | F |
Chen HW et al., 2021 [ |
Y | RP | 86.4 | 163 | NA | NA | Urothelial | Various | Surgery | 64.3 | CT scan/SMI | 132 | NA | NA | Y | F |
Daffrè E et al., 2021 [ |
N | RP | 60.0 | 238 | 169 | 69 | Lung NSC | Various | Surgery | 63.0 | CT scan/SMI | 47 | 36 | 11 | Y | G |
Ferini G et al., 2021 [ |
N | RP | 70.0 | 28 | 25 | 3 | Urothelial | Various | Radiotherapy | 85.0 | CT scan/SMI | 8 | 8 | 0 | N | F |
Haik L et al., 2021 [ |
N | RP | 60.0 | 261 | 198 | 63 | Various | Various | Immunotherapy | 61.9 | CT scan/SMI | 122 | 87 | 35 | N | F |
Harry Hsu TM et al., 2021 [ |
N | P | 33.6 | 136 | 63 | 73 | Pancreas | Various | Not specified | 67.0 | CT scan/SMI | 21 | 9 | 12 | Y | F |
Hu WH et al.,2021 [ |
Y | RP | 80.4 | 114 | 68 | 46 | Colorectal | Various | Surgery | 63.2 | CT scan/SMI | 52 | NA | NA | N | G |
Huang DD et al.,2021 [ |
Y | P | 67.2 | 419 | 282 | 137 | Gastric | Various | Surgery | 72.0 | CT scan/SMI | 285 | 208 | 77 | Y | G |
Kim J et al., 2021 [ |
Y | RP | 41.0 | 840 | 526 | 534 | Gastric | Various | Various | 60.4 | CT scan/SMI | 119 | 110 | 9 | Y | G |
Kim GH et al., 2021 [ |
Y | RP | 70.5 | 280 | 182 | 98 | Gastric | Local | Surgery | 82.0 | CT scan/SMI | 173 | NA | NA | Y | G |
Kawaguchi Y et al., 2021 [ |
Y | RP | 60.0 | 256 | 173 | 83 | Lung NSC | Various | Surgery | 68.5 | CT scan/PMI | 128 | 89 | 39 | Y | F |
Juris A et al., 2021 [ |
N | RP | 48.0 | 89 | 40 | 49 | Various | Various | Various | 57.0 | CT scan/SMI | 22 | 11 | 11 | Y | F |
Jullien M et al., 2021 [ |
N | P | 36.6 | 656 | 367 | 289 | Lymphoma | Various | Various | 49.0 | CT scan/SMI | 225 | 179 | 46 | N | G |
Jalal M et al., 2021 [ |
N | RP | 0.0 | 204 | 114 | 90 | Pancreas | Locally advanced | Various | 69.0 | CT scan/SMI | 111 | 41 | 70 | Y | F |
Kirsten J et al., 2021 [ |
N | P | 12.0 | 178 | 109 | 69 | Leukemia | Metastatic | Chemotherapy | 58.3 | EWGOS1 | 49 | 42 | 7 | Y | G |
Kim N et al., 2021 [ |
Y | RP | 30.1 | 185 | 120 | 65 | Gastric | Metastatic | Immunotherapy | 59.0 | CT scan/SMI | 93 | 85 | 8 | Y | G |
Leone R et al., 2021 [ |
N | RP | 40.0 | 43 | 15 | 28 | Lymphoma | Various | Chemotherapy | 61.0 | CT scan/SMI | 13 | NA | NA | N | F |
Lee CH et al., 2021 [ |
Y | RP | 57.1 | 78 | 59 | 19 | Kidney | Metastatic | Targeted therapy | 61.6 | CT scan/SMI | 41 | 28 | 13 | N | G |
Liang H et al., 2021 [ |
Y | RP | 17.7 | 100 | 93 | 7 | Esophageal | Various | Radiotherapy | 59.0 | CT scan/SMI | 77 | 74 | 3 | Y | F |
Makal GB et al., 2021 [ |
Y | RP | 1.0 | 225 | 141 | 84 | Various | Various | Surgery | 58.7 | CT scan/TPA | 102 | 42 | 60 | N | P |
Nilsson M et al., 2021 [ |
N | RP | 60.0 | 106 | 22 | 84 | Anal | Various | Radiotherapy | 63.8 | CT scan/SMI | 41 | 11 | 30 | N | G |
Takeda T et al., 2021 [ |
Y | RP | 63.6 | 80 | 35 | 45 | Pancreas | Metastatic | Chemotherapy | 77.0 | CT scan/SMI | 61 | 25 | 36 | Y | G |
Takiguchi K et al., 2021 [ |
Y | RP | 96.0 | 209 | 116 | 93 | Colorectal | Locally advanced | Surgery | NA | CT scan/PMI | 81 | 50 | 31 | N | F |
Thureau S et al., 2021 [ |
N | P | 60.0 | 243 | 187 | 56 | Head and neck | Various | Various | 61.0 | CT scan/SMI | 88 | NA | NA | N | G |
Troschel FM et al., 2021 [ |
N | RP | 96,0 | 367 | 247 | 120 | Lung NSC | Various | Surgery | 62.2 | CT scan/NA | 104 | 86 | 18 | Y | G |
Trussardi Fayh AP et al., 2021 [ |
N | P | 0.0 | 108 | 51 | 57 | Various | Various | Various | 70.6 | EWGOS 2/SMI | 26 | NA | NA | Y | F |
van den Berg I et al., 2021 [ |
N | RP | 60.0 | 754 | 352 | 306 | Colorectal | Various | Surgery | NA | CT scan/NA | 266 | NA | NA | N | F |
Wu WY et al., 2021 [ |
Y | P | 67.2 | 648 | 486 | 162 | Gastric | Various | Surgery | 64.3 | AWGS2/ EWGOS2/SMI | 133 | 91 | 42 | Y | G |
Xu YY et al., 2021 [ |
Y | RP | 50.0 | 184 | 141 | 43 | Esophageal | Various | Various | 62.0 | CT scan/SMI | 94 | 75 | 19 | Y | F |
Yamashita S et al., 2021 [ |
Y | RP | 72.0 | 123 | 103 | 20 | Urothelial | Various | Surgery | 74.0 | CT scan/SMI | 48 | NA | NA | N | F |
Zhang FM et al., 2021 [ |
Y | P | 80.0 | 507 | 367 | 140 | Gastric | Local | Surgery | 63.0 | CT scan/SMI | 73 | 53 | 20 | Y | F |
Zilioli VR et al., 2021 [ |
N | RP | 144.0 | 154 | 78 | 76 | Lymphoma | Various | Various | 71.0 | CT scan/SMI | 66 | 42 | 24 | N | G |
Zou HB et al., 2021 [ |
Y | P | 6.0 | 135 | 91 | 44 | Gastric | Various | Surgery | 64.0 | AWGS 2/SMI | 27 | 14 | 13 | Y | F |
Peng H et al., 2021 [ |
Y | RP | 82.0 | 121 | 96 | 25 | Esophageal | Various | Surgery | 70.3 | CT scan/SMI | 65 | 52 | 13 | Y | F |
Rinninella E et al., 2021 [ |
N | RP | 0.0 | 26 | 18 | 8 | Gastric | Locally advanced | Various | 63.3 | CT scan/SMI | 19 | NA | NA | Y | F |
Runkel M et al., 2021 [ |
N | RP | 0.0 | 94 | 58 | 36 | Colorectal | Metastatic | Surgery | 61.4 | CT scan/SMI | 34 | NA | NA | N | F |
Sakurai K et al., 2021 [ |
Y | RP | 127.0 | 1054 | 691 | 363 | Gastric | Various | Surgery | NA | CT scan/SMI | 193 | 117 | 76 | Y | G |
Sehouli J et al., 2021 [ |
N | P | 59.0 | 226 | 0 | 226 | Various | Various | Surgery | 59.0 | BIA/ASM | 68 | 0 | 68 | N | G |
Şengül Ayçiçek G et al., 2021 [ |
N | P | 0.0 | 49 | 25 | 24 | Various | Various | Surgery | 70.0 | BIA/ASM | 14 | 1 | 13 | N | F |
Sun X et al., 2021 [ |
Y | P | 50.0 | 267 | 202 | 65 | Gastric | Various | Surgery | 64.8 | AWGS 1/SMI | 49 | 32 | 17 | Y | G |
Pessia B et al., 2021 [ |
N | RP | 48.0 | 68 | NA | NA | Pancreas | Local | Surgery | 63.0 | CT scan/SMI | 32 | NA | NA | N | G |
Choi H et al., 2021 [ |
Y | RP | 60.0 | 440 | 243 | 197 | Lung NSC | Local | Surgery | 65.0 | CT scan/SMI | 246 | NA | NA | Y | G |
Jang HY et al., 2021 [ |
Y | RP | 120.0 | 160 | 120 | 40 | Liver | Local | Surgery | 55.2 | CT scan/SMI | 28 | 17 | 11 | Y | G |
Tenuta M et al., 2021 [ |
N | P | 62.5 | 47 | 27 | 20 | Lung NSC | Locally advanced | Immunotherapy | 67.0 | EWGOS 2/ASM | 19 | 10 | 9 | N | G |
Lee JH et al., 2021 [ |
Y | P | 36.0 | 70 | 70 | 0 | Prostate | Metastatic | Various | 66.5 | CT scan/SMI | 47 | 47 | 0 | Y | G |
Taniguchi Y et al., 2021 [ |
Y | RP | 72.0 | 567 | 393 | 174 | Gastric | Various | Surgery | NA | CT scan/PMI | 88 | 81 | 7 | Y | G |
Deng L et al., 2021 [ |
Y | P | 80.0 | 121 | 52 | 69 | Cholangiocarcinoma | Various | Surgery | 65.0 | CT scan/PMI | 53 | NA | NA | N | G |
Uemura S et al., 2021 [ |
Y | RP | 60.0 | 69 | 38 | 31 | Pancreas | Various | Chemotherapy | 63.0 | CT scan/SMI | 33 | 12 | 21 | N | F |
Jung AR et al., 2021 [ |
Y | P | 96.0 | 190 | 156 | 34 | Head and neck | Various | Various | 71.9 | CT scan/SMI | 64 | 56 | 8 | N | G |
Huang X et al., 2021 [ |
Y | P | 3.0 | 82 | 55 | 27 | Head and neck | Various | Chemotherapy | 45.7 | AWGS 1//NA | 37 | 17 | 20 | N | G |
Regnier R et al., 2021 [ |
N | RP | 3.0 | 82 | 62 | 20 | Kidney | Locally advanced | Various | 65.0 | CT scan/SMI | 47 | 39 | 8 | Y | G |
Jin K et al., 2021 [ |
Y | RP | 0.0 | 119 | 59 | 60 | Pancreas | Locally advanced | Various | 60.2 | CT scan/SMI | 57 | NA | NA | N | G |
Miura A et al., 2021 [ |
Y | RP | 79.6 | 259 | 155 | 104 | Lung NSC | Various | Surgery | 73.0 | CT scan/PMI | 179 | 127 | 52 | Y | F |
Takahashi Y et al., 2021 [ |
Y | RP | 137.0 | 315 | 192 | 123 | Lung NSC | Local | Surgery | 70.0 | CT scan/PMI | 79 | 46 | 33 | Y | G |
Silva PB et al., 2021 [ |
N | P | 0.0 | 71 | 71 | 0 | Head and neck | Various | Not specified | 66.9 | EWGOS 1/ASM | 32 | 32 | 0 | N | F |
Seror M et al., 2021 [ |
N | RP | 60.0 | 110 | 92 | 18 | Liver | Local | Surgery | 67.7 | CT scan/SMI | 26 | 25 | 1 | Y | G |
Badran H et al., 2020 [ |
N | P | 12.0 | 262 | 96 | 53 | Liver | Locally advanced | Various | 59.6 | CT scan/SMI | 113 | 86 | 27 | N | F |
Chen WS et al., 2020 [ |
Y | P | 0.0 | 360 | 214 | 146 | Colorectal | Various | Surgery | 72.0 | AWGS 1/SMI | 133 | 76 | 57 | N | G |
Fraisse G et al., 2020 [ |
N | RP | 64.8 | 146 | 126 | 20 | Urothelial | Various | Various | NA | CT scan/SMI | 67 | 59 | 8 | N | P |
Hirsch L et al.,2020 [ |
N | P | 18.0 | 92 | 58 | 34 | Various | Metastatic | Immunotherapy | 64.6 | CT scan/SMI | 45 | NA | NA | N | G |
Huang CH et al., 2020 [ |
Y | RP | 84.0 | 107 | 101 | 6 | Esophageal | Various | Various | 54.1 | CT scan/SMI | 65 | 63 | 2 | Y | P |
Lanza E et al., 2020 [ |
N | RP | 60.0 | 142 | 110 | 32 | Liver | Various | Intra-arterial infusion for hepatocellular carcinoma | 73.0 | CT scan/SMI | 121 | 97 | 24 | Y | G |
Tsukagoshi M et al., 2020 [ |
Y | RP | 36.0 | 30 | 23 | 7 | Lung NSC | Various | Immunotherapy | 67.0 | CT scan/PMI | 13 | 10 | 3 | N | G |
Ueno A et al., 2020 [ |
Y | RP | 0.0 | 82 | 0 | 82 | Breast | Various | Chemotherapy | 54.0 | CT scan/SMI | 10 | NA | 10 | Y | F |
Pielkenrood BJ et al., 2020 [ |
N | P | 19.2 | 310 | 194 | 116 | Various | Metastatic | Radiotherapy | 67.0 | CT scan/SMI | 119 | NA | NA | N | G |
Wang PY et al., 2020 [ |
Y | P | 0.2 | 212 | 145 | 67 | Esophageal | Various | Surgery | 64.9 | AWGS 1/ASM | 55 | 37 | 18 | Y | G |
Martini K et al., 2020 [ |
N | RP | 1.0 | 234 | 69 | 165 | Lung NSC | Various | Surgery | NA | CT scan/NA | 78 | 23 | 55 | N | F |
Berardi G et al., 2020 [ |
N | P | 3.0 | 234 | 158 | 76 | Various | Various | Surgery | 66.5 | EWGOS 2/NA | 68 | 31 | 37 | Y | G |
den Boer RB et al., 2020 [ |
N | P | 3.0 | 199 | 158 | 41 | Gastric | Various | Various | 66.1 | CT scan/SMI | 84 | 67 | 17 | N | F |
Xu LB et al., 2020 [ |
Y | P | 48.0 | 749 | 499 | 250 | Gastric | Various | Surgery | NA | AWGS 2/SMI | 134 | 91 | 43 | Y | G |
Yu J II et al., 2020 [ |
Y | RCT | 192.0 | 458 | 282 | 176 | Gastric | Various | Various | NA | CT scan/SMI | 75 | 74 | 1 | Y | G |
Mishra A et al., 2020 [ |
N | P | 0.0 | 296 | 161 | 135 | Leukemia | Metastatic | Chemotherapy | 52.4 | CT scan/SMI | 132 | 75 | 57 | N | G |
Choi K et al., 2020 [ |
Y | P | 72.0 | 238 | 193 | 45 | Liver | Various | Various | 59.0 | CT scan/PMI | 135 | 130 | 5 | Y | G |
Benadon B et al., 2020 [ |
N | P | 60.0 | 104 | 72 | 32 | Esophageal | Locally advanced | Various | 63.0 | CT scan/SMI | 84 | NA | NA | Y | G |
Mallet R et al., 2020 [ |
N | P | 120.0 | 97 | 81 | 16 | Esophageal | Various | Various | 63.6 | CT scan/SMI | 54 | 49 | 5 | Y | G |
Ryu Y et al., 2020 [ |
Y | P | 60.0 | 548 | 326 | 222 | Pancreas | Various | Various | 62.5 | CT scan/SMI | 252 | 186 | 66 | Y | G |
Giani A et al., 2020 [ |
N | P | 0.0 | 173 | 111 | 62 | Colorectal | Local | Surgery | 70.0 | CT scan/NA | 43 | NA | NA | Y | F |
van Rijn-Dekker MI et al., 2020 [ |
N | P | 60.0 | 750 | 555 | 195 | Head and neck | Various | Various | NA | CT scan/NA | 189 | 143 | 46 | Y | G |
Srpcic M et al., 2020 [ |
N | P | 120.0 | 139 | 117 | 22 | Esophageal | Various | Surgery | 63.9 | CT scan/SMI | 23 | 20 | 3 | Y | G |
Roch B et al., 2020 [ |
N | RP | 30.0 | 142 | 93 | 49 | Lung NSC | Metastatic | Immunotherapy | 63.5 | CT scan/SMI | 92 | NA | NA | Y | G |
Agalar C et al., 2020 [ |
N | P | 36.0 | 65 | 23 | 42 | Colorectal | Metastatic | Various | 56.0 | CT scan/SMI | 20 | 6 | 14 | N | F |
Shinohara S et al., 2020 [ |
Y | RP | 96.0 | 391 | 275 | 116 | Lung NSC | Various | Surgery | 69.3 | CT scan/PMI | 198 | 160 | 38 | Y | G |
Salman MA et al., 2020 [ |
N | P | 12.0 | 52 | 38 | 14 | Liver | Local | Surgery | 53.9 | CT scan/SMI | 27 | 18 | 9 | N | G |
Stangl-Kremser J et al., 2020 [ |
N | RCT | 60.0 | 186 | 186 | 0 | Prostate | Metastatic | Chemotherapy | 68.8 | CT scan/SMI | 154 | 154 | NA | Y | G |
Zhuang CL et al., 2020 [ |
Y | RP | 36.0 | 883 | 619 | 264 | Gastric | Various | Surgery | 65.0 | EWGOS 1/EWGOS 2/SMI | 150 | 103 | 47 | Y | G |
Hendrickson NR et al., 2020 [ |
N | RP | 12.0 | 145 | 83 | 62 | Sarcoma | Various | Surgery | NA | CT scan/PMI | 38 | 21 | 17 | Y | G |
Yumioka T et al., 2020 [ |
Y | RP | 0.0 | 80 | 55 | 25 | Various | Various | Chemotherapy | 71.6 | CT scan/TPA | 39 | NA | NA | N | F |
Oflazoglu U et al., 2020 [ |
N | P | 0.0 | 461 | 203 | 258 | Various | Various | Not specified | 58.2 | EWGOS 1/ASM | 77 | 59 | 18 | Y | G |
Lee EC et al., 2020 [ |
Y | P | 60.0 | 158 | 73 | 85 | Urothelial | Various | Surgery | 64.0 | CT scan/SMI | 88 | 58 | 30 | Y | F |
Martin L et al., 2020 [ |
N | P | 19.6 | 1157 | 744 | 413 | Various | Various | Various | 63.6 | CT scan/SMI | 173 | NA | NA | Y | F |
Couderc AL et al., 2020 [ |
N | P | 0.0 | 31 | 31 | 0 | Prostate | Various | Various | 80.4 | EWGOS 2/ASM | 8 | 8 | NA | N | F |
He WZ et al., 2020 [ |
Y | P | 144.0 | 1767 | 1382 | 385 | Head and neck | Various | Various | NA | CT scan/SMI | 683 | 573 | 110 | N | G |
Chen XY et al., 2019 [ |
Y | P | 0.0 | 313 | 229 | 84 | Gastric | Various | Surgery | 62.0 | AWGS 1/SMI | 37 | 23 | 14 | Y | G |
Dijksterhuis WPM et al., 2019 [ |
N | P | 0.0 | 88 | 66 | 22 | Various | Metastatic | Chemotherapy | 63.0 | CT scan/SMI | 43 | 29 | 14 | N | F |
Dolan RD et al., 2019 [ |
N | P | 109.2 | 650 | 354 | 296 | Colorectal | Various | Surgery | NA | CT scan/SMI | 283 | 150 | 133 | N | G |
de Paula N et al., 2019 [ |
N | RP | 13.0 | 232 | 0 | 232 | Uterus | Various | Various | 64.3 | CT scan/SMI | 60 | 0 | 60 | Y | F |
Griffin OM et al., 2019 [ |
N | P | 48.0 | 78 | 37 | 41 | Pancreas | Various | Chemotherapy | 64.2 | CT scan/SMI | 39 | NA | NA | N | F |
Hopkins JJ et al., 2019 [ |
N | RP | 123.0 | 968 | 589 | 379 | Colorectal | Various | Surgery | 65.8 | CT scan/SMI | 488 | 262 | 226 | Y | G |
Jung A et al., 2019 [ |
Y | P | 70.5 | 258 | 223 | 35 | Head and neck | Various | Various | 64.0 | CT scan/SMI | 17 | NA | NA | Y | G |
Huillard O et al., 2019 [ |
N | RCT | 0.0 | 180 | NA | NA | Thyroid | Metastatic | Targeted therapy | 63.0 | CT scan/SMI | 89 | NA | NA | Y | G |
Kitano Y et al., 2019 [ |
Y | RP | 94.1 | 110 | 75 | 35 | Cholangiocarcinoma | Locally advanced | Surgery | 71.0 | CT scan/SMI | 31 | 17 | 14 | N | G |
Kurk S et al., 2019 [ |
N | RCT | 57.0 | 182 | 115 | 67 | Colorectal | Metastatic | Chemotherapy | 64.0 | CT scan/NA | 99 | 63 | 36 | Y | G |
Lin J et al., 2019 [ |
Y | P | 0.0 | 594 | 448 | 146 | Gastric | Locally advanced | Surgery | 64.3 | CT scan/SMI | 195 | NA | NA | N | G |
Matsunaga T et al., 2019 [ |
Y | RP | 54.0 | 163 | 128 | 35 | Esophageal | Various | Various | 64.7 | BIA/NA | 82 | 64 | 18 | Y | G |
Tamura T et al., 2019 [ |
Y | RP | 1.0 | 153 | 101 | 52 | Gastric | Various | Surgery | NA | BIA/NA | 24 | 17 | 7 | Y | G |
Vashi PG et al., 2019 [ |
N | RP | 70.0 | 112 | 63 | 49 | Colorectal | Various | Various | 56.3 | CT scan/SMI | 46 | 26 | 20 | N | G |
Yamamoto K et al., 2019 [ |
Y | RP | 60.0 | 90 | 61 | 29 | Gastric | Various | Surgery | NA | EWGOS 1/ASM | 19 | 17 | 2 | Y | G |
Yang J et al., 2019 [ |
Y | RP | 1.0 | 417 | 251 | 166 | Colorectal | Various | Surgery | 57.9 | CT scan/SMI | 61 | 42 | 19 | Y | G |
Okabe H et al., 2019 [ |
Y | RP | 0.0 | 269 | 167 | 102 | Colorectal | Various | Surgery | 74.0 | CT scan/SMI | 159 | 81 | 78 | Y | G |
Otten L et al., 2019 [ |
N | P | 12.0 | 439 | 248 | 191 | Various | Various | Various | 69.6 | EWGOS 1/ASM | 119 | 82 | 37 | Y | G |
Panje CM et al., 2019 [ |
N | RCT | 84.0 | 61 | 57 | 4 | Esophageal | Locally advanced | Various | 61.0 | CT scan/SMI | 31 | NA | NA | N | G |
Sasaki S et al., 2019 [ |
Y | RCT | 6.0 | 219 | 143 | 76 | Colorectal | Various | Various | 64.0 | CT scan/SMI | 135 | 109 | 26 | Y | G |
Shi B et al., 2019 [ |
Y | RP | 0.0 | 279 | 205 | 74 | Gastric | Various | Surgery | 56.2 | CT scan/SMI | 125 | 106 | 19 | N | G |
da Silva JR et al., 2019 [ |
N | P | 13.0 | 334 | 151 | 183 | Various | Various | Palliative | 63.0 | CT scan/ASM | 219 | NA | NA | Y | G |
Charette N et al., 2019 [ |
N | RCT | 30.0 | 217 | 123 | 94 | Colorectal | Locally advanced | Chemotherapy | 63.0 | CT scan/SMI | 150 | NA | NA | Y | G |
Jang M et al., 2019 [ |
Y | RP | 0.0 | 284 | 163 | 121 | Pancreas | Local | Surgery | 62.6 | CT scan/SMI | 191 | NA | NA | Y | G |
Kiss N et al., 2019 [ |
N | P | 80.0 | 41 | 29 | 12 | Lung NSC | Various | Various | 65.6 | CT scan/SMI | 25 | NA | NA | Y | G |
Kurita Y et al., 2019 [ |
Y | RP | 66.0 | 82 | 60 | 22 | Pancreas | Metastatic | Chemotherapy | 64.0 | CT scan/SMI | 42 | 31 | 11 | N | F |
Nakamura N et al., 2019 [ |
Y | RP | 146.5 | 90 | 51 | 39 | Lymphoma | Metastatic | Chemotherapy | 59.0 | CT scan/SMI | 39 | 25 | 14 | N | F |
Ma BW et al., 2019 [ |
Y | P | 1.0 | 545 | 418 | 127 | Gastric | Locally advanced | Surgery | 62.6 | EWGOS 1/SMI | 40 | 25 | 15 | Y | G |
Wang P et al., 2019 [ |
Y | P | 12.0 | 44 | 26 | 18 | Esophageal | Various | Surgery | 65.7 | BIA/NA | 18 | NA | NA | N | G |
Soma D et al., 2019 [ |
Y | P | 0.0 | 102 | 89 | 13 | Esophageal | Various | Various | 67.3 | CT scan/SMI | 45 | 34 | 11 | N | G |
Zhang S et al., 2019 [ |
Y | RP | 43.2 | 6447 | 4317 | 2130 | Various | Various | Surgery | NA | CT scan/NA | 1638 | 1109 | 529 | Y | F |
Ataseven B et al., 2018 [ |
N | RP | 0.0 | 323 | 0 | 323 | Ovary | Various | Surgery | 60.0 | CT scan/SMI | 152 | NA | 152 | Y | G |
Banaste N et al., 2018 [ |
N | RP | 81.6 | 214 | 105 | 109 | Colorectal | Metastatic | Various | 59.5 | CT scan/SMI | 90 | NA | NA | N | G |
Chambard LC et al., 2018 [ |
N | P | 50.0 | 64 | 48 | 16 | Lung NSC | Metastatic | Various | 65.1 | DXA/ASM | 16 | NA | NA | N | G |
Chen WZ et al., 2018 [ |
Y | P | 0.0 | 376 | 228 | 148 | Colorectal | Various | Surgery | 64.3 | AWGS 1/SMI | 92 | 44 | 48 | Y | G |
Kawamura T et al., 2018 [ |
Y | RP | 66.5 | 951 | 660 | 291 | Gastric | Various | Surgery | 74.2 | AWGS 1/AMA | 111 | 69 | 42 | Y | G |
Ní Bhuachalla EB et al., 2018 [ |
N | P | 26.1 | 725 | 433 | 292 | Various | Various | Chemotherapy | 64.3 | CT scan/NA | 274 | 144 | 130 | N | G |
Kim YR et al., 2018 [ |
Y | RP | 80.0 | 92 | 92 | 0 | Liver | Metastatic | Surgery | 54.0 | CT scan/NA | 72 | 72 | 0 | Y | G |
Lee JS et al., 2018 [ |
Y | RP | 31.9 | 140 | 106 | 34 | Gastric | Various | Chemotherapy | 67.0 | CT scan/SMI | 67 | 66 | 1 | N | F |
Mayr R et al., 2018 [ |
N | RP | 3.0 | 327 | 262 | 65 | Urothelial | Various | Surgery | 70.0 | CT scan/SMI | 108 | 81 | 27 | N | G |
Mao CC et al., 2018 [ |
Y | P | 1.2 | 682 | 513 | 169 | Gastric | Various | Surgery | 64.5 | AWGS 1/SMI | 132 | 90 | 42 | Y | F |
Motoori M et al., 2018 [ |
Y | RP | 0.0 | 83 | 66 | 17 | Esophageal | Various | Various | 65.0 | BIA/ASM | 28 | 55 | NA | N | P |
McSorley ST et al., 2018 [ |
N | P | 96.0 | 322 | 174 | 148 | Colorectal | Various | Surgery | NA | CT scan/SMI | 158 | NA | NA | Y | F |
van der Kroft G et al., 2018 [ |
N | P | 1.0 | 63 | 39 | 24 | Colorectal | Various | Surgery | 69.0 | CT scan/SMI | 33 | 20 | 13 | N | F |
van Vugt JLA et al., 2018 [ |
N | P | 1.0 | 816 | 440 | 376 | Colorectal | Various | Surgery | NA | CT scan/SMI | 411 | NA | NA | Y | G |
Williams GR et al., 2018 [ |
N | P | 0.1 | 25 | 12 | 13 | Colorectal | Various | Chemotherapy | 59.0 | CT scan/SMI | 12 | NA | NA | N | F |
Zhang WT et al., 2018 [ |
Y | RP | 1.0 | 636 | 478 | 158 | Gastric | Various | Surgery | NA | AWGS 1/SMI | 86 | 64 | 22 | Y | G |
Zhang Y et al., 2018 [ |
Y | RP | 0.2 | 156 | 115 | 41 | Gastric | Various | Surgery | 59.1 | CT scan/SMI | 24 | 17 | 7 | Y | G |
Okugawa Y et al., 2018 [ |
Y | P | 60.0 | 167 | 99 | 68 | Colorectal | Various | Various | 67.0 | CT scan/PMI | 55 | 20 | 35 | N | F |
Rier HN et al., 2018 [ |
N | P | 0.0 | 131 | 73 | 58 | Various | Various | Various | 72.0 | EWGOS 1/SMI | 34 | 18 | 16 | Y | F |
Sato S et al., 2018 [ |
Y | RP | 36.0 | 48 | 32 | 16 | Esophageal | Locally advanced | Various | 65.5 | CT scan/SMI | 34 | 23 | 11 | Y | F |
Stretch C et al., 2018 [ |
N | RP | 120.0 | 123 | 61 | 52 | Pancreas | Various | Surgery | 68.5 | CT scan/SMI | 50 | 29 | 21 | N | F |
Sugimoto M et al., 2018 [ |
N | RP | 60.0 | 323 | 176 | 147 | Pancreas | Various | Various | 65.0 | CT scan/SMI | 200 | NA | NA | Y | G |
Sui K et al., 2018 [ |
Y | P | 60.0 | 354 | 203 | 151 | Pancreas | Various | Surgery | 70.0 | CT scan/SMI | 87 | 51 | 36 | Y | G |
Limpawattana P et al., 2018 [ |
Y | P | 30.0 | 75 | 58 | 17 | Bile ducts | Various | Various | 57.0 | AWGS 1/ASM | 40 | 40 | 6 | Y | F |
Caan BJ et al., 2018 [ |
N | RP | 120.0 | 3241 | 0 | 3241 | Breast | Various | Various | 54.1 | CT scan/SMI | 1086 | 0 | 1086 | N | G |
Ha Y et al., 2018 [ |
Y | RP | 96.0 | 178 | 141 | 37 | Liver | Various | Various | NA | CT scan/SMI | 62 | 43 | 19 | N | G |
Nakashima Y et al., 2018 [ |
Y | RP | 60.0 | 341 | 289 | 52 | Esophageal | Various | Surgery | NA | CT scan/SMI | 171 | NA | NA | Y | G |
Makiura D et al., 2018 [ |
Y | P | 60.0 | 98 | 83 | 15 | Esophageal | Various | Surgery | 67.0 | AWGS 1/ASM | 31 | 24 | 7 | N | F |
Mason RJ et al., 2018 [ |
N | RP | 84.0 | 698 | 698 | 0 | Prostate | Various | Surgery | 61.8 | CT scan/SMI | 388 | 388 | 0 | Y | G |
Begini P et al., 2017 [ |
N | RP | 100.0 | 92 | 65 | 27 | Liver | Various | Various | 71.6 | CT scan/SMI | 37 | 20 | 17 | N | G |
Black D et al., 2017 [ |
N | RP | 61.0 | 447 | 256 | 191 | Various | Various | Various | NA | CT scan/SMI | 104 | NA | NA | Y | G |
Daly LE et al., 2017 [ |
N | RP | 0.0 | 84 | 52 | 32 | Melanoma | Metastatic | Immunotherapy | 54.0 | CT scan/SMI | 20 | 10 | 10 | Y | G |
Endo T et al., 2017 [ |
Y | P | 0.0 | 121 | 81 | 40 | Various | Various | Surgery | 70.3 | BIA/ASM | 29 | NA | NA | Y | F |
Härter J et al., 2017 [ |
N | P | 5.0 | 60 | 34 | 26 | Various | Various | Surgery | NA | BIA/ASM | 11 | NA | NA | Y | P |
Heidelberger V et al., 2017 [ |
N | RP | 17.0 | 68 | 36 | 32 | Melanoma | Various | Immunotherapy | 65.0 | CT scan/SMI | 34 | NA | NA | N | F |
Huang DD et al., 2017 [ |
Y | P | 1.0 | 470 | 364 | 106 | Gastric | Various | Surgery | 65.0 | AWGS 1/SMI | 79 | 59 | 20 | Y | F |
Imai K et al., 2017 [ |
Y | RP | 0.0 | 351 | 242 | 109 | Liver | Various | Various | 70.4 | CT scan/SMI | 33 | 30 | 3 | Y | G |
Paireder M et al., 2017 [ |
N | RP | 99.4 | 130 | 106 | 24 | Esophageal | Various | Various | 61.4 | CT scan/SMI | 80 | 68 | 12 | Y | G |
Lou N et al., 2017 [ |
Y | P | 1.0 | 206 | 161 | 45 | Gastric | Various | Surgery | 64.0 | AWGS 1/SMI | 14 | 9 | 5 | Y | G |
Cushen SJ et al., 2017 [ |
N | RP | 0.0 | 55 | 43 | 12 | Kidney | Metastatic | Targeted therapy | 66.0 | CT scan/SMI | 18 | 18 | 0 | N | G |
Cespedes Feliciano EMC et al., 2017 [ |
N | P | 120.0 | 2470 | 1251 | 1219 | Colorectal | Various | Surgery | 63.0 | CT scan/SMI | 1133 | NA | NA | Y | G |
Elliott JA et al., 2017 [ |
N | P | 60.0 | 207 | 165 | 42 | Esophageal | Various | Surgery | 61.6 | CT scan/SMI | 49 | 45 | 4 | Y | F |
Wendrich AW et al., 2017 [ |
N | RP | 90.0 | 112 | 72 | 40 | Head and neck | Various | Chemotherapy | 54.5 | CT scan/SMI | 61 | 23 | 38 | Y | G |
Bronger H et al., 2017 [ |
N | RP | 60.0 | 128 | 0 | 128 | Ovary | Various | Various | 65.0 | CT scan/SMI | 16 | 0 | 16 | Y | G |
Ishihara H et al., 2017 [ |
Y | RP | 58.0 | 137 | 89 | 48 | Urothelial | Locally advanced | Surgery | 72.8 | CT scan/SMI | 90 | 48 | 42 | Y | F |
Miyata H et al., 2017 [ |
Y | P | 0.0 | 94 | 76 | 18 | Esophageal | Various | Various | 64.2 | BIA/NA | 44 | NA | NA | N | G |
Zhou CJ et al., 2017 [ |
Y | P | 1.0 | 240 | 190 | 50 | Gastric | Various | Surgery | 73.0 | AWGS 1/SMI | 69 | 52 | 17 | Y | F |
Chemama S et al., 2016 [ |
N | RP | 0.0 | 97 | 37 | 60 | Colorectal | Metastatic | Various | 53.0 | CT scan/SMI | 39 | 6 | 33 | N | G |
Grotenhuis BA et al., 2016 [ |
N | RCT | 104.0 | 120 | 88 | 32 | Esophageal | Locally advanced | Various | 62.0 | CT scan/SMI | 54 | 42 | 12 | N | G |
Nishigori T et al., 2016 [ |
Y | RP | 0.0 | 199 | 164 | 35 | Esophageal | Various | Surgery | 65.0 | CT scan/SMI | 149 | 133 | 16 | Y | G |
Okumura S et al., 2016 [ |
Y | RP | 60.0 | 207 | 111 | 96 | Bile ducts | Various | Surgery | 68.0 | CT scan/SMI | 71 | 36 | 35 | N | G |
Pecorelli N et al., 2016 [ |
N | RP | 2.0 | 202 | 108 | 94 | Pancreas | Various | Surgery | 66.8 | CT scan/SMI | 132 | 79 | 53 | Y | F |
Park I et al., 2016 [ |
Y | P | 44.3 | 88 | 59 | 29 | Various | Metastatic | Chemotherapy | 65.0 | CT scan/ASM | 76 | 57 | 19 | Y | F |
Suzuki Y et al., 2016 [ |
Y | RP | 100.0 | 90 | 52 | 38 | Lung NSC | Local | Surgery | 68.7 | CT scan/SMI | 38 | 16 | 22 | N | F |
Takeoka Y et a. 2016 [ |
Y | RP | 60.0 | 56 | 19 | 37 | Myeloma | Metastatic | Chemotherapy | 71.0 | CT scan/SMI | 37 | 8 | 29 | Y | F |
Fukushima H et al., 2016 [ |
Y | RP | 96.0 | 81 | 53 | 28 | Urothelial | Various | Surgery | 71.0 | CT scan/SMI | 47 | 28 | 19 | Y | G |
Go SI et al., 2016 [ |
Y | RP | 132.0 | 187 | 112 | 75 | Lymphoma | Metastatic | Chemotherapy | NA | CT scan/SMI | 46 | 28 | 18 | Y | G |
Kumar A et al., 2016 [ |
N | P | 60.0 | 296 | 0 | 296 | Ovary | Metastatic | Chemotherapy | 64.6 | CT scan/SMI | 132 | 0 | 132 | N | G |
Pędziwiatr M et al., 2016 [ |
N | P | 1.0 | 124 | 73 | 51 | Colorectal | Various | Surgery | 65.9 | CT scan/SMI | 34 | 12 | 22 | Y | G |
Rollins KE et al., 2016 [ |
N | RP | 66.0 | 228 | 124 | 104 | Pancreas | Various | Chemotherapy | NA | CT scan/SMI | 138 | NA | NA | Y | G |
Yabusaki N et al., 2016 [ |
Y | RP | 60.0 | 195 | 157 | 38 | Liver | Local | Surgery | 66.0 | CT scan/SMI | 89 | 57 | 32 | N | F |
Buettner S et al., 2016 [ |
N | P | 12.0 | 1326 | 730 | 596 | Various | Various | Surgery | 62.5 | CT scan/TPA | 398 | 219 | 179 | Y | G |
Amini N et al., 2015 [ |
N | RP | 60.0 | 763 | 418 | 345 | Pancreas | Various | Surgery | 67.0 | CT scan/TPA | 192 | NA | NA | Y | G |
Anandavadivelan P et al., 2015 [ |
N | RCT | 0.0 | 72 | 61 | 11 | Esophageal | Various | Chemotherapy | 67.0 | CT scan/SMI | 31 | NA | NA | N | G |
Fukuda Y et al., 2015 [ |
Y | P | 0.0 | 99 | 66 | 33 | Gastric | Various | Surgery | NA | AWGS 1/ASM | 21 | 19 | 2 | Y | G |
Huang DD et al., 2015 [ |
Y | P | 1.0 | 142 | 88 | 54 | Colorectal | Various | Surgery | 62.0 | AWGS 1/SMI | 17 | 11 | 6 | Y | G |
Ida S et al., 2015 [ |
Y | P | 0.0 | 138 | 121 | 17 | Esophageal | Various | Surgery | NA | BIA/NA | 61 | 47 | 14 | N | G |
Kim EY et al., 2015 [ |
Y | RP | 38.0 | 149 | 127 | 22 | Lung SC | Various | Various | 68.6 | CT scan/SMI | 118 | 110 | 8 | Y | G |
Levolger S et al., 2015 [ |
N | P | 36.0 | 90 | 63 | 27 | Liver | Various | Various | 62.0 | CT scan/SMI | 52 | 39 | 13 | Y | G |
Reisinger KW et al., 2015 [ |
N | RP | 1.0 | 310 | 155 | 155 | Esophageal | Various | Surgery | 69.0 | CT scan/SMI | 148 | 90 | 58 | Y | G |
Tamandl D et al., 2015 [ |
N | RP | 60.0 | 200 | 151 | 49 | Esophageal | Various | Surgery | 63.9 | CT scan/SMI | 130 | 107 | 23 | Y | G |
Tegels JJ et al., 2015 [ |
N | RP | 6.0 | 149 | NA | NA | Gastric | Various | Surgery | 69.8 | EWGOS 1/SMI | 86 | NA | NA | Y | G |
Voron T et al., 2015 [ |
N | RP | 70.0 | 109 | 92 | 17 | Liver | Local | Surgery | 61.7 | CT scan/SMI | 59 | 53 | 6 | Y | G |
Lodewic TM et al., 2015 [ |
N | P | 60.0 | 171 | 104 | 67 | Colorectal | Metastatic | Surgery | 64.0 | CT scan/SMI | 80 | 45 | 35 | N | G |
Tan BH et al., 2015 [ |
N | RP | 83.3 | 89 | 67 | 22 | Various | Various | Chemotherapy | 65.8 | CT scan/SMI | 44 | 34 | 10 | N | G |
Wang SL et al., 2015 [ |
Y | P | 1.0 | 255 | 190 | 65 | Gastric | Various | Surgery | 65.1 | AWGS 1/SMI | 32 | 26 | 6 | Y | G |
van Vugt JL et al., 2015 [ |
N | RP | 1.0 | 206 | 100 | 106 | Colorectal | Metastatic | Surgery | NA | CT scan/SMI | 90 | 46 | 44 | N | G |
Gonzalez MC et al., 2014 [ |
N | P | 36.0 | 175 | 60 | 115 | Various | Various | Chemotherapy | 56.9 | BIA/ASM | 22 | NA | NA | Y | G |
Barret M et al., 2014 [ |
N | P | 2.0 | 51 | 38 | 13 | Colorectal | Metastatic | Chemotherapy | 65.0 | CT scan/SMI | 36 | 31 | 5 | Y | G |
Harimoto N et al., 2013 [ |
Y | RP | 60.0 | 186 | 145 | 41 | Liver | Various | Surgery | NA | CT scan/SMI | 75 | 50 | 25 | N | G |
Huillard O et al., 2013 [ |
N | RP | 52.0 | 61 | 38 | 59 | Kidney | Metastatic | Targeted therapy | 60.0 | CT scan/SMI | 32 | 24 | 8 | N | G |
Veasey-Rodrigues H et al., 2013 [ |
N | P | 2.0 | 16 | 5 | 11 | Various | Metastatic | Targeted therapy | 60.0 | CT scan/SMI | 7 | NA | NA | Y | F |
Veasey-Rodrigues H et al., 2013 [ |
N | RCT | 3.0 | 306 | 159 | 147 | Various | Metastatic | Various | 56.0 | CT scan/SMI | 144 | 93 | 51 | Y | G |
Meza-Junco J et al., 2013 [ |
N | RP | 24.0 | 116 | 98 | 18 | Liver | Various | Various | 58.0 | CT scan/SMI | 35 | 30 | 5 | N | F |
Lieffers JR et al., 2012 [ |
N | RP | 1.0 | 234 | 135 | 99 | Colorectal | Various | Surgery | 63.0 | CT scan/SMI | 91 | 57 | 34 | N | G |
Mir O et al., 2012 [ |
N | RP | 16.0 | 18 | 15 | 3 | Liver | Metastatic | Chemotherapy | 64.0 | CT scan/SMI | 9 | NA | NA | N | F |
Parsons HA et al., 2012 [ |
N | RCT | 26.6 | 104 | 65 | 39 | Various | Metastatic | Various | NA | CT scan/SMI | 53 | 36 | 17 | N | G |
Parsons HA et al., 2012 [ |
N | RP | 26.6 | 48 | 19 | 29 | Various | Metastatic | Intra-arterial infusion for hepatocellular carcinoma | 56.0 | CT scan/SMI | 21 | 10 | 11 | N | F |
van Vledder MG et al., 2012 [ |
N | RP | 97.0 | 196 | 120 | 76 | Colorectal | Metastatic | Surgery | 64.5 | CT scan/SMI | 38 | 11 | 27 | Y | G |
Dalal S et al., 2012 [ |
N | RCT | 90.0 | 41 | 18 | 23 | Pancreas | Locally advanced | Various | 58.9 | CT scan/SMI | 26 | NA | NA | Y | F |
Antoun S et al., 2010 [ |
N | RCT | 6.0 | 80 | 60 | 20 | Kidney | Metastatic | Targeted therapy | 59.8 | CT scan/SMI | 42 | 20 | 13 | Y | G |
Tan BH et al., 2009 [ |
N | P | 42.0 | 111 | 52 | 59 | Pancreas | Various | Palliative | 64.4 | CT scan/SMI | 62 | 33 | 27 | Y | G |
Prado CM et al., 2009 [ |
N | P | 19.2 | 55 | NA | 55 | Breast | Metastatic | Targeted therapy | 54.8 | CT scan/SMI | 14 | NA | 14 | N | G |
Prado CM et al., 2008 [ |
N | P | 39.6 | 250 | 136 | 114 | Various | Various | Not specified | 63.9 | CT scan/SMI | 38 | 28 | 10 | Y | F |
Y = yes; N = no; RCT = randomized control trial; P = prospective observational study; RP = retrospective observational study with consecutive inclusion; M = male; F = female; NSC = non-small cell; SC = small cell; NA = not available; BIA = bioelectrical impedance analysis; DXA = dual energy X-ray absorptiometry; AMA = arm muscle area; ASM = appendicular skeletal muscle mass; SMI = skeletal muscle index; PMI = psoas muscle index; TPA = total psoas area; AWGS = Asian Working Group on Sarcopenia; EWGOS = European Working Group On Sarcopenia; NOS score: G = good; F = fair; P = poor.
Prevalence of sarcopenia among cancer patients.
Study Groups | Patients | Prevalence |
p Value for Subgroup Differences | Heterogeneity | ||
---|---|---|---|---|---|---|
N | (%) | I2 | p | |||
Overall | 0.11 | |||||
All studies | 65,936 | (100) | 38.0 [36.0–41.0] | 97% | <0.01 | |
Excluding studies over the 95% CI (funnel plot) | 18,935 | (29) | 40.5 [39.0–42.0] | 66% | <0.01 | |
Quality of study (NOS scale) | 0.75 | |||||
Good | 47,028 | (71) | 38.0 [34.0–41.0] | 97% | <0.01 | |
Fair | 18,287 | (28) | 40.0 [35.0–44.0] | 96% | <0.01 | |
Poor | 621 | (1) | 40.5 [28.5–54.0] | 86.5% | <0.01 | |
Year of publication | 0.80 | |||||
2008–2012 | 1343 | (2) | 40.0 [30.0–50.0] | 92% | <0.01 | |
2013–2017 | 13,411 | (20) | 40.0 [34.0–46.0] | 96% | <0.01 | |
2018–2022 | 51,182 | (78) | 38.0 [35.0–41.0] | 97% | <0.01 | |
N° of patients included | <0.01 | |||||
<100 | 4364 | (7) | 45.0 [41.0–50.0] | 84% | <0.01 | |
<100–199 | 9606 | (14.5) | 41.0 [36.0–47.0] | 95% | <0.01 | |
<200–399 | 16,023 | (24) | 36.0 [31.0–42.0] | 97% | <0.01 | |
≥400 | 35,943 | (54.5) | 27.0 [22.0–32.0] | 99% | <0.01 | |
World region | 0.26 | |||||
Asia | 33,453 | (51) | 37.0 [32.0–41.0] | 97.5% | <0.01 | |
Not Asia | 32,483 | (49) | 40.0 [37.0–43.0] | 95% | <0.01 | |
Mean or median age (y) at inclusion (n = 47,986) | 0.21 | |||||
<65 | 30,691 | (64) | 38.0 [34.0–42.0] | 96% | <0.01 | |
≥65 | 17,295 | (36) | 42.0 [37.0–46.0] | 96% | <0.01 | |
Sex (n = 46,265) | 0.22 | |||||
Women | 15,841 | (34) | 34.0 [30.0–38.0] | 91% | <0.01 | |
Men | 30,424 | (66) | 37.0 [34.0–41.0] | 96% | <0.01 | |
BMI (n = 8627) | <0.01 | |||||
≥30 kg/m2 | 2628 | (30.5) | 19.0 [13.0–27.0] | 89.5% | <0.01 | |
<30 kg/m2 | 5999 | (69.5) | 39.0 [31.0–47.0] | 96% | <0.01 | |
Cancer site | <0.01 | |||||
Gastric | 13,513 | (20.5) | 24.0 [19.0–29.5] | 97.5% | <0.01 | |
Breast | 3517 | (5) | 25.0 [17.5–35.0] | 82% | <0.01 | |
Sarcoma | 254 | (0.4) | 25.0 [20.0–30.5] | 0% | 0.55 | |
Uterus | 232 | (0.3) | 26.0 [21.0–32.0] | - | - | |
Head and neck | 3724 | (6) | 31.0 [21.0–43.0] | 95% | <0.01 | |
Ovarian | 747 | (1) | 33.0 [16.0–55.0] | 95% | <0.01 | |
Lymphoma | 1130 | (2) | 35.0 [29.0–41.5] | 75% | <0.01 | |
Various | 14,600 | (22) | 35.0 [29.0–41.0] | 96% | <0.01 | |
Cholangiocarcinoma | 231 | (0.3) | 36.0 [26.0–47.0] | 83% | <0.01 | |
Melanoma | 152 | (0.2) | 36.0 [20.0–56.0] | 91% | <0.01 | |
Leukemia | 474 | (0.7) | 36.0 [25.0–49.0] | 93% | <0.01 | |
Colorectal | 11,419 | (17) | 38.0 [33.0–44.0] | 95% | <0.01 | |
Anal | 106 | (0.2) | 39.0 [30.0–48.0] | - | - | |
Bile ducts | 282 | (0.4) | 42.5 [30.0–56.0] | 88% | <0.01 | |
Non-small cell lung | 2914 | (4) | 43.0 [34.0–51.5] | 95% | <0.01 | |
Liver | 2391 | (4) | 44.0 [33.0–55.5] | 95% | <0.01 | |
Myeloma | 152 | (0.2) | 44.0 [18.0–74.0] | 95% | <0.01 | |
Thyroids | 180 | (0.3) | 49.5 [42.0–57.0] | - | - | |
Pancreatic | 3813 | (6) | 49.5 [41.5–57.5] | 96% | <0.01 | |
Kidney | 356 | (0.5) | 50.0 [43.0–57.0] | 53% | 0.07 | |
Esophageal | 3474 | (5) | 50.0 [43.0–57.0] | 92% | <0.01 | |
Urothelial | 1163 | (2) | 52.0 [39.5–64.0] | 94% | <0.01 | |
Prostatic | 985 | (1.5) | 60.0 [38.0–79.0] | 95% | <0.01 | |
Small cell lung | 149 | (0.2) | 79.0 [72.0–85.0] | - | - | |
Cancer extension | <0.01 | |||||
Various | 54,269 | (82) | 35.0 [32.0–38.0] | 97% | <0.01 | |
Local | 2783 | (4) | 39.0 [30.0–50.0] | 97% | <0.01 | |
Locally advanced | 3186 | (5) | 48.0 [37.0–59.0] | 96% | <0.01 | |
Metastatic | 5698 | (9) | 46.0 [40.0–51.0] | 92% | <0.01 | |
Treatment modalities | <0.01 | |||||
Not specified | 918 | (1) | 21.0 [12.5–33.0] | 91% | <0.01 | |
Surgery | 40,486 | (61) | 33.0 [30.0–37.0] | 97% | <0.01 | |
Targeted therapy | 634 | (1) | 41.0 [32.0–50.0] | 81% | <0.01 | |
Various | 17,641 | (27) | 41.0 [36.0–45.0] | 96% | <0.01 | |
Immune therapy | 909 | (1) | 46.0 [38.0–54.5] | 80% | <0.01 | |
Radiotherapy | 544 | (0.8) | 46.0 [28.0–66.0] | 93% | <0.01 | |
Chemotherapy | 4169 | (6) | 48.0 [41.0–56.0] | 93% | <0.01 | |
Exclusive supportive care | 445 | (0.7) | 62.0 [55.0–69.0] | 70% | <0.01 | |
Intra-arterial infusion for hepatocellular carcinoma | 190 | (0.3) | 68.0 [35.0–90.0] | 96.5% | <0.01 | |
Definition of sarcopenia | <0.01 | |||||
Consensus algorithm-based | ||||||
Overall | 11,013 | (17) | 22.0 [19.0–26.0] | 93% | <0.01 | |
AWGS | 6996 | 20.5 [16.0–25.0] | 93% | <0.01 | ||
EWGOS 2 | 2462 | 20.5 [15.5–27.0] | 88% | <0.01 | ||
EWGOS 1 | 3086 | 25.0 [17.0–35.0] | 96% | <0.01 | ||
Muscle mass quantity only | ||||||
Overall | 54,923 | (83) | 42.0 [39.0–45.0] | 96% | <0.01 | |
DXA | 64 | 25.0 [16.0–37.0] | - | - | ||
BIA | 1306 | 30.0 [23.0–38.0] | 90% | <0.01 | ||
CT scan | 53,553 | 43.0 [40.0–46.0] | 96.5% | <0.01 | ||
Muscle mass indices (n = 55,304) | <0.01 | |||||
AMA (cm2) | 951 | (2) | 12.0 [10.0–14.0] | - | - | |
ASM (kg/m2) | 3261 | (6) | 31.0 [24.0–39.0] | 95% | <0.01 | |
TPA (cm2/m2) | 2394 | (4) | 36.0 [27.0–46.0] | 93% | <0.01 | |
PMI (cm2/m2) | 2967 | (5) | 36.5 [28.0–46.0] | 96.5% | <0.01 | |
SMI (cm2/m2) | 45,731 | (83) | 40.0 [37.0–43.0] | 97% | <0.01 | |
Median cut-off values of CT scan-based SMI for women (n = 14,216) | <0.01 | |||||
<38.5 (cm2/m2) | 4609 | (32) | 25.0 [21.0–29.0] | 87% | <0.01 | |
≥38.5 (cm2/m2) | 9607 | (68) | 47.0 [40.0–54.0] | 92% | <0.01 | |
Median cut-off values of CT scan-based SMI for men (n = 20,514) | <0.01 | |||||
<47.3 (cm2/m2) | 11,584 | (56) | 28.0 [24.0–32.0] | 95% | <0.01 | |
≥47.3 (cm2/m2) | 8930 | (44) | 52.0 [46.0–58.0] | 95% | <0.01 |
Bold = grouping data, and significant p value at the threshold of 5%; BIA = bioelectrical impedance analysis; DXA = dual energy X-ray sbsorptiometry; AWGS = Asian Working Group on Sarcopenia; EWGOS = European Working Group On Sarcopenia; AMA = arm muscle area; ASM = appendicular skeletal muscle mass; SMI = skeletal muscle index; PMI = psoas muscle index; TPA = total psoas area.
Predictive value of pre-therapeutic sarcopenia on overall survival (OS) among cancer patients.
Study Groups | Patients | Relative Risk [95% CI] for OS | p Value for Subgroup Differences | Heterogeneity | ||
---|---|---|---|---|---|---|
N | (%) | I2 | p | |||
Overall | 0.37 | |||||
All studies | 28,995 | (100) | 1.97 [1.79–2.17] | 85% | <0.01 | |
Excluding studies over the 95% CI (funnel plot) | 7191 | (25) | 1.68 [1.55–1.80] | 77% | <0.01 | |
Quality of study (NOS) | 0.65 | |||||
Good | 22,939 | (79) | 1.94 [1.73–2.16] | 75% | <0.01 | |
Fair | 5803 | (20) | 2.10 [1.71–2.58] | 90.5% | <0.01 | |
Poor | 253 | (1) | 1.40 [0.47–4.20] | 77% | 0.04 | |
Year of publication | 0.93 | |||||
2008–2012 | 598 | (2) | 1.85 [1.29–2.65] | 54% | 0.09 | |
2013–2017 | 5977 | (21) | 1.97 [1.53–2.52] | 93% | <0.01 | |
2018–2022 | 22,420 | (77) | 1.99 [1.78–2.22] | 75% | <0.01 | |
N° of patients included | 0.01 | |||||
<100 | 1718 | (6) | 2.24 [1.71–2.92] | 87% | <0.01 | |
100–199 | 5150 | (18) | 2.17 [1.86–2.53] | 61% | <0.01 | |
200–399 | 8417 | (29) | 1.90 [1.57–2.30] | 81% | <0.01 | |
≥400 | 13,710 | (47) | 1.57 [1.35–1.82] | 71% | <0.01 | |
World region | <0.01 | |||||
Asia | 10,964 | (38) | 2.37 [2.07–2.71] | 84% | <0.01 | |
Not Asia | 18,031 | (62) | 1.69 [1.48–1.91] | 72% | <0.01 | |
Mean or median age (y) at inclusion (n = 23,630) | 0.09 | |||||
<65 | 14,384 | (61) | 1.87 [1.62–2.16] | 75% | <0.01 | |
≥65 | 9246 | (39) | 2.24 [1.93–2.61] | 89% | <0.01 | |
Cancer site | <0.01 | |||||
Gastric | 5447 | (19) | 1.88 [1.46–2.44] | 74% | <0.01 | |
Breast | 0 | (0) | - | - | - | |
Sarcoma | 145 | (0.5) | 3.42 [0.81–14.4] | - | - | |
Uterus | 232 | (0.8) | 2.23 [1.18–3.92] | - | - | |
Head and neck | 1692 | (6) | 2.75 [2.00–3.78] | 62% | 0.03 | |
Ovarian | 424 | (1.5) | 1.64 [0.53–5.06] | 82.5% | 0.02 | |
Lymphoma | 997 | (3) | 1.55 [0.89–2.70] | 73% | 0.02 | |
Various | 3649 | (13) | 1.72 [1.19–2.45] | 96% | <0.01 | |
Cholangiocarcinoma | 231 | (0.8) | 2.66 [1.85–3.81] | 0% | 0.69 | |
Melanoma | 0 | (0) | - | - | - | |
Leukemia | 178 | (0.6) | 3.12 [1.53–6.35] | - | - | |
Colorectal | 7252 | (25) | 1.58 [1.28–1.95] | 67% | <0.01 | |
Anal | 106 | (0.4) | 4.50 [1.05–19.2] | - | - | |
Bile ducts | 282 | (1) | 2.71 [1.87–3.92] | 0% | 0.49 | |
Non-small cell lung | 1440 | (5) | 2.92 [2.01–4.24] | 53% | 0.04 | |
Liver | 1422 | (5) | 2.56 [1.94–3.39] | 43% | 0.07 | |
Myeloma | 56 | (0.2) | 1.96 [0.78–5.00] | - | - | |
Thyroids | 0 | (0) | - | - | - | |
Pancreatic | 1789 | (6) | 1.45 [1.13–1.86] | 71% | <0.01 | |
Kidney | 78 | (0.3) | 2.63 [1.50–4.61] | - | - | |
Esophageal | 1856 | (6) | 2.29 [1.77–2.95] | 49% | 0.03 | |
Urothelial | 835 | (3) | 1.87 [1.20–2.89] | 51% | 0.08 | |
Prostatic | 884 | (3) | 1.35 [0.89–2.03] | 0% | 0.52 | |
Small cell lung | 0 | (0) | - | - | - | |
Cancer extension | 0.40 | |||||
Various | 23,842 | (82) | 1.86 [1.68–2.07] | 72% | <0.01 | |
Local | 1404 | (5) | 2.32 [1.71–3.15] | 27% | 0.23 | |
Locally advanced | 917 | (3) | 2.42 [1.50–3.92] | 77% | <0.01 | |
Metastatic | 2832 | (10) | 2.09 [1.53–2.86] | 94% | <0.01 | |
Treatment modalities | 0.74 | |||||
Not specified | 386 | (1) | 2.16 [1.49–3.13] | 0% | 0.50 | |
Surgery | 16,463 | (57) | 2.09 [1.84–2.37] | 63% | <0.01 | |
Targeted therapy | 78 | (0.3) | 2.63 [1.50–4.61] | - | - | |
Various | 7798 | (27) | 1.85 [1.55–2.20] | 77% | <0.01 | |
Immune therapy | 618 | (2) | 2.37 [0.92–6.08] | 92% | <0.01 | |
Radiotherapy | 516 | (2) | 2.91 [1.23–6.90] | 77% | 0.01 | |
Chemotherapy | 2549 | (9) | 1.70 [1.23–2.36] | 95% | <0.01 | |
Exclusive supportive care | 445 | (1.5) | 1.62 [1.06–2.47] | 64% | 0.10 | |
Intra-arterial infusion for hepatocellular carcinoma | 142 | (0.5) | 2.22 [1.01–4.86] | - | - | |
Definition of sarcopenia | 0.24 | |||||
Muscle mass quantity only | ||||||
CT scan | 25,656 | (88) | 1.93 [1.74–2.15] | 86% | <0.01 | |
BIA | 347 | (1) | 1.77 [1.00–2.13] | 35% | 0.22 | |
DXA | 64 | (0.2) | 2.96 [1.40–6.27] | - | - | |
Consensus algorithm-based | 2928 | (10) | 2.31 [1.97–2.72] | 22% | 0.25 | |
Muscle mass indices (n = 27,061) | <0.01 | |||||
AMA (cm2) | 951 | (3) | 2.26 [1.69–3.03] | - | - | |
ASM (kg/m2) | 1274 | (5) | 2.84 [2.01–4.00] | 87% | <0.01 | |
TPA (cm2/m2) | 0 | (0) | - | - | - | |
PMI (cm2/m2) | 1567 | (6) | 2.76 [2.21–3.43] | 0% | 0.63 | |
SMI (cm2/m2) | 23,269 | (86) | 1.85 [1.66–2.07] | 75% | <0.01 |
Bold = grouping data, and significant p value at the threshold of 5%; BIA = bioelectrical impedance analysis; DXA = dual energy X-ray absorptiometry; AMA = arm muscle area; ASM = appendicular skeletal muscle mass; SMI = skeletal muscle index; PMI = psoas muscle index; TPA = total psoas area.
Predictive value of pre-therapeutic sarcopenia on progression-free survival (PFS) among cancer patients.
Study Groups | Patients | Relative Risk [95% CI] for PFS | p Value for Subgroup Differences | Heterogeneity | ||
---|---|---|---|---|---|---|
N | (%) | I2 | p | |||
Overall | 0.23 | |||||
All studies | 6546 | (100) | 1.76 [1.44–2.16] | 85% | <0.01 | |
Excluding studies over the 95% CI (funnel plot) | 4008 | (61) | 1.35 [1.19–1.52] | 80% | <0.01 | |
Quality of study (NOS) | 0.15 | |||||
Good | 5055 | (77) | 1.83 [1.51–2.21] | 75% | <0.01 | |
Fair | 1345 | (20.5) | 1.68 [0.89–3.15] | 94% | <0.01 | |
Poor | 146 | (2.5) | 0.92 [0.48–1.78] | - | - | |
Year of publication | 0.93 | |||||
2008–2012 | 251 | (4) | 1.89 [1.34–2.64] | 0% | 0.98 | |
2013–2017 | 693 | (10) | 1.83 [1.07–3.13] | 83% | <0.01 | |
2018–2022 | 5602 | (86) | 1.75 [1.37–2.24] | 87% | <0.01 | |
N° of patients included | 0.73 | |||||
<100 | 489 | (7.5) | 2.22 [1.24–3.97] | <0.01 | ||
100–199 | 1863 | (28.5) | 1.81 [1.35–2.42] | <0.01 | ||
200–399 | 1922 | (29) | 1.49 [0.98–2.24] | <0.01 | ||
≥400 | 2272 | (35) | 1.79 [0.97–3.29] | <0.01 | ||
World region | <0.01 | |||||
Asia | 2307 | (35) | 2.38 [1.81–3.13] | 80% | <0.01 | |
Not Asia | 4239 | (65) | 1.42 [1.12–1.81] | 75.5% | <0.01 | |
Mean or median age (y) at inclusion (n = 5891) | 0.78 | |||||
<65 | 3186 | (54) | 1.75 [1.28–2.40] | 91% | <0.01 | |
≥65 | 2705 | (46) | 1.85 [1.43–2.39] | 60% | 0.01 | |
Cancer site | <0.01 | |||||
Gastric | 726 | (11) | 1.68 [0.43–6.50] | 96% | <0.01 | |
Breast | 55 | (0.8) | 1.90 [1.03–3.50] | - | - | |
Sarcoma | 109 | (2) | 4.60 [3.53–6.00] | - | - | |
Uterus | 0 | (0) | - | - | - | |
Head and neck | 243 | (3.5) | 2.45 [1.58–3.78] | - | - | |
Ovarian | 128 | (2) | 2.64 [1.23–5.64] | - | - | |
Lymphoma | 1040 | (16) | 1.95 [1.19–3.20] | 73% | 0.01 | |
Various | 349 | (5) | 0.70 [0.54–0.93] | 0% | 0.92 | |
Cholangiocarcinoma | 0 | (0) | - | - | - | |
Melanoma | 0 | (0) | - | - | - | |
Leukemia | 0 | (0) | - | - | - | |
Colorectal | 2512 | (38) | 1.35 [1.05–1.74] | 55% | 0.03 | |
Anal | 0 | (0) | - | - | - | |
Bile ducts | 207 | (3) | 2.14 [1.46–3.13] | - | - | |
Non-small cell lung | 534 | (8) | 2.43 [1.90–3.12] | 0% | 0.47 | |
Liver | 0 | (0) | - | - | - | |
Myeloma | 0 | (0) | - | - | - | |
Thyroids | 0 | (0) | - | - | - | |
Pancreatic | 0 | (0) | - | - | - | |
Kidney | 78 | (1) | 3.18 [1.85–5.47] | - | - | |
Esophageal | 163 | (2.5) | 1.24 [0.71–2.17] | - | - | |
Urothelial | 146 | (2) | 0.92 [0.47–1.78] | - | - | |
Prostatic | 256 | (4) | 2.23 [0.69–7.18] | 71% | 0.06 | |
Small cell lung | 0 | (0) | - | - | - | |
Cancer extension | 0.13 | |||||
Various | 4469 | (68) | 1.62 [1.26–2.08] | 81% | <0.01 | |
Local | 315 | (5) | 2.32 [1.62–3.32] | - | - | |
Locally advanced | 47 | (1) | 8.11 [1.61–41.0] | - | - | |
Metastatic | 1715 | (26) | 1.84 [1.28–2.64] | 89% | <0.01 | |
Treatment modalities | 0.11 | |||||
Not specified | 0 | (0) | - | - | - | |
Surgery | 3296 | (50) | 1.73 [1.28–2.35] | 81% | <0.01 | |
Targeted therapy | 242 | (4) | 3.21 [1.94–5.33] | 73% | 0.03 | |
Various | 2024 | (31) | 1.45 [1.10–1.91] | 62% | <0.01 | |
Immune therapy | 480 | (7) | 2.11 [0.84–5.29] | 90% | <0.01 | |
Radiotherapy | 0 | (0) | - | - | - | |
Chemotherapy | 504 | (8) | 1.74 [0.83–3.64] | 87% | <0.01 | |
Exclusive supportive care | 0 | (0) | - | - | - | |
Intra-arterial infusion for hepatocellular carcinoma | 0 | (0) | - | - | - | |
Definition of sarcopenia | <0.01 | |||||
Muscle mass quantity only | ||||||
CT scan | 5688 | (87) | 1.70 [1.38–2.10] | 84% | <0.01 | |
BIA | 163 | (2.5) | 1.24 [0.71–2.17] | - | - | |
DXA | 0 | (0) | - | - | - | |
Consensus algorithm-based | 695 | (10.5) | 3.59 [2.17–5.92] | 12% | 0.29 | |
Muscle mass indices (n = 6383) | <0.01 | |||||
AMA (cm2) | 0 | (0) | - | - | - | |
ASM (kg/m2) | 47 | (1) | 8.11 [1.61–40.9] | - | - | |
TPA (cm2/m2) | 0 | (0) | - | - | - | |
PMI (cm2/m2) | 621 | (9.5) | 3.05 [2.01–4.62] | 72% | 0.01 | |
SMI (cm2/m2) | 5715 | (87) | 1.61 [1.30–1.99] | 81% | <0.01 |
Bold = grouping data, and significant p value at the threshold of 5%; BIA = bioelectrical impedance analysis; DXA = dual energy X-ray absorptiometry; AMA = arm muscle area; ASM = appendicular skeletal muscle mass; SMI = skeletal muscle index; PMI = psoas muscle index; TPA = total psoas area.
Predictive value of pre-therapeutic sarcopenia on severe post-operative complications (POC) among cancer patients.
Study Groups | Patients | Relative Risk [95% CI] for POC | p Value for Subgroup Differences | Heterogeneity | ||
---|---|---|---|---|---|---|
N | (%) | I2 | p | |||
Overall | 0.02 | |||||
All studies | 17,172 | (100) | 2.70 [2.33–3.12] | 72% | <0.01 | |
Excluding studies over the 95% CI (funnel plot) | 3633 | (21) | 2.22 [1.84–2.68] | 64% | <0.01 | |
Quality of study (NOS) | 0.34 | |||||
Good | 14,555 | (85) | 2.75 [2.34–3.24] | 75% | <0.01 | |
Fair | 2411 | (14) | 2.67 [1.83–3.91] | 60% | <0.01 | |
Poor | 206 | (1) | 1.87 [1.16–3.04] | 0% | 0.51 | |
Year of publication | 0.02 | |||||
2008–2012 | 0 | (0) | - | |||
2013–2017 | 6355 | (37) | 1.39 [1.18–1.63] | 48.5% | <0.01 | |
2018–2022 | 10,817 | (63) | 1.91 [1.53–2.38] | 81% | <0.01 | |
N° of patients included | 0.04 | |||||
<100 | 806 | (5) | 1.78 [1.09–2.92] | 72% | <0.01 | |
100–199 | 2425 | (14) | 1.30 [1.08–1.56] | 41% | 0.04 | |
200–399 | 5407 | (31) | 1.95 [1.42–2.68] | 85% | <0.01 | |
≥400 | 8534 | (50) | 1.87 [1.47–2.39] | 58% | <0.01 | |
World region | <0.01 | |||||
Asia | 10,092 | (59) | 2.02 [1.60–2.55] | 81% | <0.01 | |
Not Asia | 7080 | (41) | 1.38 [1.20–1.60] | 57% | <0.01 | |
Mean or median age (y) at inclusion (n = 13,209) | 0.39 | |||||
<65 | 6572 | (50) | 1.91 [1.49–2.44] | 64% | <0.01 | |
≥65 | 6637 | (50) | 1.64 [1.28–2.10] | 78% | <0.01 | |
Cancer site | <0.01 | |||||
Gastric | 6856 | (40) | 3.09 [2.42–3.93] | 43% | 0.02 | |
Breast | 0 | (0) | - | - | - | |
Sarcoma | 145 | (1) | 1.78 [1.22–2.59] | - | - | |
Uterus | 0 | (0) | - | - | - | |
Head and neck | 0 | (0) | - | - | - | |
Ovarian | 0 | (0) | - | - | - | |
Lymphoma | 0 | (0) | - | - | - | |
Various | 1895 | (11) | 3.95 [1.97–7.95] | 71% | <0.01 | |
Cholangiocarcinoma | 110 | (1) | 2.44 [2.08–2.87] | 0% | 0.46 | |
Melanoma | 0 | (0) | - | - | - | |
Leukemia | 0 | (0) | - | - | - | |
Colorectal | 0 | (0) | - | - | - | |
Anal | 0 | (0) | - | - | - | |
Bile ducts | 0 | (0) | - | - | - | |
Non-small cell lung | 808 | (5) | 3.66 [1.12–11.9] | 93% | <0.01 | |
Liver | 385 | (2) | 2.47 [0.90–6.77] | 85% | <0.01 | |
Myeloma | 0 | (0) | - | - | - | |
Thyroids | 0 | (0) | - | - | - | |
Pancreatic | 1629 | (9) | 1.86 [1.26–2.75] | 51% | 0.07 | |
Kidney | 0 | (0) | - | - | - | |
Esophageal | 828 | (5) | 3.17 [1.82–5.52] | 82% | <0.01 | |
Urothelial | 473 | (3) | 1.68 [1.33–2.11] | 0% | 0.47 | |
Prostatic | 698 | (4) | 4.50 [1.76–11.5] | - | - | |
Small cell lung | 0 | (0) | - | - | - | |
Cancer extension | 0.06 | |||||
Various | 14,436 | (84) | 1.76 [1.46–2.11] | 74% | <0.01 | |
Local | 999 | (6) | 2.35 [1.14–4.86] | 80% | <0.01 | |
Locally advanced | 955 | (6) | 1.35 [0.85–2.14] | 57% | 0.05 | |
Metastatic | 782 | (4) | 1.30 [1.09–1.54] | 0% | 0.80 | |
Treatment modalities | 0.04 | |||||
Not specified | 0 | (0) | - | - | - | |
Surgery | 16,325 | (95) | 1.77 [1.50–2.09] | 76% | <0.01 | |
Targeted therapy | 0 | (0) | - | - | - | |
Various | 847 | (5) | 1.26 [0.95–1.67] | 43% | 0.10 | |
Immune therapy | 0 | (0) | - | - | - | |
Radiotherapy | 0 | (0) | - | - | - | |
Chemotherapy | 0 | (0) | - | - | - | |
Exclusive supportive care | 0 | (0) | - | - | - | |
Intra-arterial infusion for hepatocellular carcinoma | 0 | (0) | - | - | - | |
Definition of sarcopenia | 0.03 | |||||
Muscle mass quantity only | ||||||
CT scan | 11,212 | (65) | 2.39 [2.01–2.83] | 75% | <0.01 | |
BIA | 626 | (4) | 3.16 [1.74–5.76] | 65% | 0.02 | |
DXA | 0 | (0) | - | - | - | |
Consensus algorithms | 5334 | (31) | 3.62 [2.79–4.69] | 36% | 0.07 | |
Muscle mass indices (n = 16,413) | 0.06 | |||||
AMA (cm2) | 0 | (0) | - | - | - | |
ASM (kg/m2) | 834 | (5) | 3.26 [1.80–5.90] | 72% | <0.01 | |
TPA (cm2/m2) | 2089 | (13) | 1.60 [1.09–2.35] | 72% | 0.06 | |
PMI (cm2/m2) | 719 | (4) | 2.41 [0.99–5.91] | 93% | <0.01 | |
SMI (cm2/m2) | 12,771 | (78) | 1.48 [1.27–1.71] | 61% | <0.01 |
Bold = grouping data, and significant p value at the threshold of 5%; BIA = bioelectrical impedance analysis; DXA = dual energy X-ray absorptiometry; AMA = arm muscle area; ASM = appendicular skeletal muscle mass; SMI = skeletal muscle index; PMI = psoas muscle index; TPA = total psoas area.
Predictive value of pre-therapeutic sarcopenia on severe treatment-related toxicities and/or dose-limiting toxicities (TOX) among cancer patients.
Study Groups | Patients | Relative Risk [95% CI] for TOX | p Value for Subgroup Differences | Heterogeneity | ||
---|---|---|---|---|---|---|
N | (%) | I2 | p | |||
Overall | 0.49 | |||||
All studies | 2980 | (100) | 1.47 [1.17–1.84] | 71% | <0.01 | |
Excluding studies over the 95% CI (funnel plot) | 760 | (25.5) | 1.31 [1.11–1.57] | 62% | <0.01 | |
Quality of study (NOS) | 0.02 | |||||
Good | 2356 | (79) | 1.34 [1.01–1.77] | 67% | <0.01 | |
Fair | 517 | (17) | 1.78 [1.43–2.21] | 24% | 0.25 | |
Poor | 107 | (4) | 2.72 [1.76–4.21] | - | - | |
Year of publication | 0.38 | |||||
2008–2012 | 55 | (2) | 2.56 [1.14–5.78] | - | - | |
2013–2017 | 424 | (14) | 1.56 [0.94–2.60] | 70% | <0.01 | |
2018–2022 | 2501 | (84) | 1.40 [1.07–1.84] | 73% | <0.01 | |
N° of patients included | 0.03 | |||||
<100 | 851 | (28.5) | 1.39 [1.01–1.91] | 67% | <0.01 | |
100–199 | 702 | (23.5) | 1.92 [1.26–2.93] | 68.5% | <0.01 | |
200–399 | 219 | (7.5) | 0.98 [0.78–1.25] | - | - | |
≥400 | 1208 | (40.5) | 1.42 [0.63–3.21] | 88% | <0.01 | |
World region | 0.80 | |||||
Asia | 1551 | (52) | 1.43 [1.04–1.98] | 76.5% | <0.01 | |
Not Asia | 1429 | (48) | 1.52 [1.08–2.13] | 65% | <0.01 | |
Mean or median age (y) at inclusion (n = 1772) | 0.44 | |||||
<65 | 1459 | (82) | 1.57 [1.18–2.11] | 77% | <0.01 | |
≥65 | 313 | (18) | 1.26 [0.79–2.02] | 0% | 0.46 | |
Cancer site | <0.01 | |||||
Gastric | 458 | (15) | 0.96 [0.72–1.29] | - | - | |
Breast | 137 | (4.5) | 2.93 [1.82–4.73] | 0% | 0.69 | |
Sarcoma | 0 | (0) | - | - | - | |
Uterus | 0 | (0) | - | - | - | |
Head and neck | 862 | (29) | 2.47 [1.65–3.69] | 0% | 0.40 | |
Ovarian | 0 | (0) | - | - | - | |
Lymphoma | 0 | (0) | - | - | - | |
Various | 89 | (3) | ||||
Cholangiocarcinoma | 0 | (0) | - | - | - | |
Melanoma | 68 | (2) | 1.20 [0.40–3.56] | - | - | |
Leukemia | 0 | (0) | - | - | - | |
Colorectal | 244 | (8) | 1.00 [0.80–1.26] | 0% | 0.56 | |
Anal | 0 | (0) | - | - | - | |
Bile ducts | 0 | (0) | - | - | - | |
Non-small cell lung | 0 | (0) | - | - | - | |
Liver | 0 | (0) | - | - | - | |
Myeloma | 0 | (0) | - | - | - | |
Thyroids | 180 | (6) | 1.20 [0.89–1.61] | - | - | |
Pancreatic | 281 | (9) | 1.66 [1.13–2.42] | 0% | 0.47 | |
Kidney | 139 | (5) | 1.98 [0.99–3.98] | 0% | 0.71 | |
Esophageal | 494 | (16.5) | 1.17 [0.66–2.08] | 86% | <0.01 | |
Urothelial | 28 | (1) | 0.83 [0.21–3.29] | - | - | |
Prostatic | 0 | (0) | - | - | - | |
Small cell lung | 0 | (0) | - | - | - | |
Cancer extension | <0.01 | |||||
Various | 2216 | (74) | 1.57 [1.16–2.12] | 77% | <0.01 | |
Local | 0 | (0) | - | - | - | |
Locally advanced | 228 | (8) | 0.69 [0.47–1.02] | 0% | 0.62 | |
Metastatic | 536 | (18) | 1.57 [1.18–2.09] | 28% | 0.22 | |
Treatment modalities | 0.19 | |||||
Not specified | 0 | (0) | - | - | - | |
Surgery | 0 | (0) | - | - | - | |
Targeted therapy | 374 | (12.5) | 1.63 [1.05–2.54] | 30% | 0.23 | |
Various | 2040 | (68.5) | 1.22 [0.85–1.74] | 79% | <0.01 | |
Immune therapy | 68 | (2) | 1.20 [0.40–3.56] | - | - | |
Radiotherapy | 28 | (1) | 0.83 [0.21–3.29] | - | - | |
Chemotherapy | 470 | (16) | 1.98 [1.55–2.54] | 32% | 0.20 | |
Exclusive supportive care | 0 | (0) | - | - | - | |
Intra-arterial infusion for hepatocellular carcinoma | 0 | (0) | - | - | - | |
Definition of sarcopenia | <0.01 | |||||
Muscle mass quantity only | ||||||
CT scan | 2886 | (97) | 1.53 [1.22–1.93] | 70% | <0.01 | |
BIA | 94 | (3) | 0.82 [0.56–1.21] | - | - | |
DXA | 0 | (0) | - | - | - | |
Consensus algorithm-based | 0 | (0) | - | - | - | |
Muscle mass indices (n = 2136) | - | |||||
AMA (cm2) | 0 | (0) | - | - | - | |
ASM (kg/m2) | 0 | (0) | - | - | - | |
TPA (cm2/m2) | 0 | (0) | - | - | - | |
PMI (cm2/m2) | 0 | (0) | - | - | - | |
SMI (cm2/m2) | 2136 | (100) | 1.49 [1.18–1.90] | 69% | <0.01 |
Bold = grouping data, and significant p value at the threshold of 5%; BIA = bioelectrical impedance analysis; DXA = dual energy X-ray absorptiometry; AMA = arm muscle area; ASM = appendicular skeletal muscle mass; SMI = skeletal muscle index; PMI = psoas muscle index; TPA = total psoas area.
Predictive value of pre-therapeutic sarcopenia on severe treatment-related toxicities and/or dose-limiting toxicities (TOX) among cancer patients.
Study Groups | Patients | Relative Risk [95% CI] for NI | p Value for Subgroup Differences | Heterogeneity | ||
---|---|---|---|---|---|---|
N | (%) | I2 | p | |||
Overall | <0.01 | |||||
All studies | 6246 | (100) | 1.76 [1.41–2.22] | 58% | <0.01 | |
Excluding studies over the 95% CI (funnel plot) | 864 | (14) | 1.15 [0.87–1.52] | |||
Quality of study (NOS) | 0.09 | |||||
Good | 4380 | (70) | 1.90 [1.45–2.49] | 52% | 0.01 | |
Fair | 1783 | (28.5) | 1.64 [1.02–2.65] | 69% | <0.01 | |
Poor | 83 | (1.5) | 0.83 [0.42–1.65] | - | - | |
Year of publication | 0.63 | |||||
2008–2012 | 234 | (4) | 1.83 [1.03–3.25] | - | - | |
2013–2017 | 2128 | (34) | 1.50 [1.20–1.87] | 30% | 0.17 | |
2018–2022 | 3884 | (62) | 1.87 [1.56–2.23] | 72% | <0.01 | |
N° of patients included | <0.01 | |||||
<100 | 132 | (2) | 0.76 [0.44–1.32] | 0% | 0.71 | |
100–199 | 1059 | (17) | 1.77 [1.22–2.56] | 34% | 0.17 | |
200–399 | 2385 | (38) | 1.85 [1.23–2.80] | 69% | <0.01 | |
≥400 | 2670 | (43) | 2.26 [1.66–3.07] | 6% | 0.36 | |
World region | 0.33 | |||||
Asia | 4817 | (77) | 1.91 [1.42–2.57] | 66% | <0.01 | |
Not Asia | 1429 | (33) | 1.53 [1.11–2.12] | 36% | 0.14 | |
Mean or median age (y) at inclusion (n = 5047) | <0.01 | |||||
<65 | 2126 | (42) | 2.60 [1.93–3.52] | 41% | 0.10 | |
≥65 | 2921 | (58) | 1.36 [1.01–1.83] | 45% | 0.06 | |
Cancer site | <0.01 | |||||
Gastric | 3342 | (53.5) | 2.55 [1.88–3.46] | 29% | 0.21 | |
Breast | 0 | (0) | - | - | - | |
Sarcoma | 0 | (0) | - | - | - | |
Uterus | 0 | (0) | - | - | - | |
Head and neck | 0 | (0) | - | - | - | |
Ovarian | 0 | (0) | - | - | - | |
Lymphoma | 0 | (0) | - | - | - | |
Various | 49 | (1) | 0.67 [0.27–1.66] | - | - | |
Cholangiocarcinoma | 0 | (0) | - | - | - | |
Melanoma | 0 | (0) | - | - | - | |
Leukemia | 0 | (0) | - | - | - | |
Colorectal | 1033 | (16.5) | 1.80 [1.31–2.48] | 14% | 0.33 | |
Anal | 0 | (0) | - | - | - | |
Bile-ducts | 0 | (0) | - | - | - | |
Non-small cell lung | 0 | (0) | - | - | - | |
Liver | 0 | (0) | - | - | - | |
Myeloma | 0 | (0) | - | - | - | |
Thyroids | 0 | (0) | - | - | - | |
Pancreatic | 202 | (3) | 0.69 [0.32–1.49] | - | - | |
Kidney | 0 | (0) | 0 | - | - | |
Esophageal | 1620 | (26) | 1.49 [1.02–2.18] | 61% | 0.01 | |
Urothelial | 0 | (0) | - | - | - | |
Prostatic | 0 | (0) | - | - | - | |
Small cell lung | 0 | (0) | - | - | - | |
Cancer extension | 0.57 | |||||
Various | 6073 | (97) | 1.75 [1.38–2.22] | 60% | <0.01 | |
Local | 173 | (3) | 2.13 [1.11–4.10] | - | - | |
Locally-advanced | 0 | (0) | - | - | - | |
Metastatic | 0 | (0) | - | - | - | |
Treatment modalities | 0.12 | |||||
Not specified | 0 | (0) | - | - | - | |
Surgery | 6033 | (97) | 1.84 [1.45–2.32] | 58% | <0.01 | |
Targeted therapy | 0 | (0) | - | - | - | |
Various | 213 | (3) | 1.05 [0.54–2.06] | 19% | 0.27 | |
Immune-therapy | 0 | (0) | - | - | - | |
Radiotherapy | 0 | (0) | - | - | - | |
Chemotherapy | 0 | (0) | - | - | - | |
Exclusive supportive care | 0 | (0) | - | - | - | |
Intra-arterial infusion for hepatocellular carcinoma | 0 | (0) | - | - | - | |
Definition of sarcopenia | 0.03 | |||||
-Muscle mass quantity only | ||||||
CT-scan | 2487 | (40) | 1.59 [1.28–1.97] | 0% | 0.45 | |
BIA | 423 | (7) | 1.12 [0.62–2.02] | 59% | 0.06 | |
DXA | 0 | (0) | - | - | - | |
-Consensus algorithm-based | 3336 | (53) | 2.49 [1.75–3.54] | 64% | <0.01 | |
Muscle mass indices (n = 5782) | 0.92 | |||||
AMA (cm2) | 951 | (16) | 1.86 [1.10–3.16] | - | - | |
ASM (kg/m2) | 344 | (6) | 1.34 [0.44–4.06] | 88% | <0.01 | |
TPA (cm2/m2) | 0 | (0) | - | - | - | |
PMI (cm2/m2) | 567 | (10) | 1.56 [0.73–3.30] | - | - | |
SMI (cm2/m2) | 3920 | (68) | 1.85 [1.41–2.43] | 53% | 0.01 |
Bold = grouping data, and significant p value at the threshold of 5%; BIA = bioelectrical impedance analysis; DXA = Dual Energy X-Ray Absorptiometry; AMA = arm muscle area; ASM = appendicular skeletal muscle mass; SMI = skeletal muscle index; PMI = psoas muscle index; TPA = total psoas area.
Appendix A
Consensus-based algorithm definition of sarcopenia.
Consensus | Year | Screening | Definition | ||||
---|---|---|---|---|---|---|---|
Muscle Mass | Muscular Strength | Muscular Performance | |||||
EWGOS 1 | 2010 | No | ↓ |
AND | ↓ |
OR | ↓ |
IWGS | 2011 | No | ↓ |
AND | No | - | ↓ |
AWGS 1 | 2014 | No | ↓ |
AND | ↓ |
AND | ↓ |
EWGOS 2 | 2019 | Yes |
↓ |
AND | ↓ |
AND
|
↓ |
AWGS 2 | 2019 | Yes |
↓ |
AND | ↓ |
AND
|
↓ |
EWGOS: European Working Group On Sarcopenia; IWGS: International Working Group on Sarcopenia; AWGS: Asian Working Group on Sarcopenia; DXA: dual-energy X-ray absorptiometry; BIA: bioelectrical impedance analysis; CT: computed tomography; MRI: magnetic resonance imagery. M: male; F: female. GS: gait speed; SPPB: short physical performance battery; TGUG: timed get up and go test. SARCF: strength, assistance with walking, rise from a chair, climb stairs, and falls. ↓: reduced muscle mass; Bold = consensus names, and syndromic combination.
Multivariate meta-regression of factors significantly influencing the prevalence of pre-therapeutic sarcopenia among cancer patients.
Study Groups | Estimates | Standard Error | p |
---|---|---|---|
N° of patients included (n = 65,936) | |||
<100 | 1 (reference) | - | - |
100–199 | 0.02 | 0.15 | 0.89 |
200–300 | −0.25 | 0.16 | 0.10 |
≥400 | 0.51 | 0.19 | <0.01 |
Definition of sarcopenia | |||
Muscle mass only (n = 54,923) | 1 (reference) | - | - |
Consensus algorithm-based (n = 11,013) | −0.85 | 0.18 | <0.0001 |
Cut-off values of CT scan-based SMI for women (per 6.0 cm2/m2 of more) (n = 14,216) | 0.05 | 0.02 | <0.01 |
Bold = grouping data, and significant p value at the threshold of 5%.
Appendix B
Figure A2. Funnel plot of the prevalence of pre-therapeutic sarcopenia among cancer patients (p value for asymmetry [Peters’ test] < 0.0001). Gold points = studies; blue dash lines = common effect with 95% CI; red dash lines = random effect.
Figure A3. Pooled relative risk (RR) of the predictive value of pre-therapeutic sarcopenia on overall survival among cancer patients [14,15,16,17,18,23,24,25,26,28,30,33,34,36,37,39,42,43,47,48,49,50,51,52,55,56,58,61,65,67,70,72,75,77,79,80,81,83,89,91,93,94,96,98,100,101,102,103,104,107,108,112,113,114,115,116,117,119,125,130,132,133,135,136,144,146,147,148,149,150,153,155,159,161,162,163,165,167,168,169,170,171,174,181,184,189,191,193,194,195,196,197,198,200,209,210,211,214,224,229,230,232,234].
Figure A4. Pooled relative risk (RR) of the predictive value of pre-therapeutic sarcopenia on progression-free survival among cancer patients [15,17,19,23,25,31,35,36,42,46,50,62,63,72,77,81,98,102,112,116,122,130,153,159,184,191,197,214,229,233].
Figure A5. Pooled relative risk (RR) of the predictive value of pre-therapeutic sarcopenia on severe post-operative complications among cancer patients [18,26,49,51,54,55,56,57,58,59,70,71,72,76,77,84,85,86,103,104,111,119,123,125,126,127,129,131,138,143,150,155,157,158,162,164,169,170,175,177,179,184,187,188,190,191,192,199,202,203,205,206,207,209,212,213,214,216,217,220].
Figure A6. Pooled relative risk (RR) of the predictive value of pre-therapeutic sarcopenia on severe treatment-related toxicity and/or dose limiting toxicity among cancer patients [22,36,40,47,70,79,82,89,96,118,129,130,136,156,161,176,183,186,215,221,233].
Figure A7. Pooled relative risk (RR) of the predictive value of pre-therapeutic sarcopenia on nosocomial infections among cancer patients [57,64,76,84,95,111,123,146,151,152,168,177,179,182,190,192,199,206,207,210,225,235].
References
1. Williams, G.R.; Dunne, R.F.; Giri, S.; Shachar, S.S.; Caan, B.J. Sarcopenia in the Older Adult with Cancer. J. Clin. Oncol.; 2021; 39, pp. 2068-2078. [DOI: https://dx.doi.org/10.1200/JCO.21.00102] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34043430]
2. Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M. et al. Sarcopenia: European consensus on definition and diagnosis Report of the European Working Group on Sarcopenia in Older People. Age Ageing; 2010; 39, pp. 412-423. [DOI: https://dx.doi.org/10.1093/ageing/afq034] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20392703]
3. Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; van Kan, G.A.; Andrieu, S.; Bauer, J.; Breuille, D. et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: Prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc.; 2011; 12, pp. 249-256. [DOI: https://dx.doi.org/10.1016/j.jamda.2011.01.003]
4. Chen, L.-K.; Liu, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Bahyah, K.S.; Chou, M.-Y.; Chen, L.-Y.; Hsu, P.-S.; Krairit, O. et al. Sarcopenia in Asia: Consensus report of the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc.; 2014; 15, pp. 95-101. [DOI: https://dx.doi.org/10.1016/j.jamda.2013.11.025] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24461239]
5. Chen, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Chou, M.-Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S. et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc.; 2020; 21, pp. 300-307. [DOI: https://dx.doi.org/10.1016/j.jamda.2019.12.012]
6. Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A. et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing; 2019; 48, pp. 16-31. [DOI: https://dx.doi.org/10.1093/ageing/afy169]
7. Pamoukdjian, F.; Bouillet, T.; Lévy, V.; Soussan, M.; Zelek, L.; Paillaud, E. Prevalence and predictive value of pre-therapeutic sarcopenia in cancer patients: A systematic review. Clin. Nutr.; 2018; 37, pp. 1101-1113. [DOI: https://dx.doi.org/10.1016/j.clnu.2017.07.010]
8. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLoS Med.; 2021; 18, e1003583. [DOI: https://dx.doi.org/10.1371/journal.pmed.1003583]
9. Ottawa Hospital Research Institute. Available online: https://www.ohri.ca//programs/clinical_epidemiology/oxford.asp (accessed on 19 August 2022).
10. Takagi, A.; Hawke, P.; Tokuda, S.; Toda, T.; Higashizono, K.; Nagai, E.; Watanabe, M.; Nakatani, E.; Kanemoto, H.; Oba, N. Serum carnitine as a biomarker of sarcopenia and nutritional status in preoperative gastrointestinal cancer patients. J. Cachexia Sarcopenia Muscle; 2022; 13, pp. 287-295. [DOI: https://dx.doi.org/10.1002/jcsm.12906] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34939358]
11. Lu, J.; Xu, Q.; Zhu, S.; Chen, L.; Ding, L.; Hua, H.; Xu, X.; Hu, J. Comparison of five sarcopenia screening tools in preoperative patients with gastric cancer using the diagnostic criteria of the European Working Group on Sarcopenia in Older People 2. Nutrition; 2022; 95, 111553. [DOI: https://dx.doi.org/10.1016/j.nut.2021.111553]
12. Deluche, E.; Lachatre, D.; Di Palma, M.; Simon, H.; Tissot, V.; Vansteene, D.; Meingan, P.; Mohebi, A.; Lenczner, G.; Pigneur, F. et al. Is sarcopenia a missed factor in the management of patients with metastatic breast cancer?. Breast; 2022; 61, pp. 84-90. [DOI: https://dx.doi.org/10.1016/j.breast.2021.12.014] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34923226]
13. Tagliafico, A.S.; Rossi, F.; Bignotti, B.; Torri, L.; Bonsignore, A.; Belgioia, L.; Domineitto, A. CT-derived relationship between low relative muscle mass and bone damage in patients with multiple myeloma undergoing stem cells transplantation. Br. J. Radiol.; 2022; 95, 1132. [DOI: https://dx.doi.org/10.1259/bjr.20210923]
14. Orzell, S.; Verhaaren, B.F.J.; Grewal, R.; Sklar, M.; Irish, J.C.; Gilbert, R.; Brown, D.; Gullane, P.; de Almeida, J.R.; Yu, E. et al. Evaluation of Sarcopenia in Older Patients Undergoing Head and Neck Cancer Surgery. Laryngoscope; 2022; 132, pp. 356-363. [DOI: https://dx.doi.org/10.1002/lary.29782] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34383321]
15. Bajrić, T.; Kornprat, P.; Faschinger, F.; Werkgartner, G.; Mischinger, H.J.; Wagner, D. Sarcopenia and primary tumor location influence patients outcome after liver resection for colorectal liver metastases. Eur. J. Surg. Oncol.; 2021; 48, pp. 615-620. [DOI: https://dx.doi.org/10.1016/j.ejso.2021.09.010] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34620509]
16. Cárcamo, L.; Peñailillo, E.; Bellolio, F.; Miguieles, R.; Urrejola, G.; Zúñiga, A.; Molina, M.E.; Larach, J.T. Computed tomography-measured body composition parameters do not influence survival in non-metastatic colorectal cancer. ANZ J. Surg.; 2021; 91, pp. E298-E306. [DOI: https://dx.doi.org/10.1111/ans.16708]
17. Catanese, S.; Aringhieri, G.; Vivaldi, C.; Salani, F.; Vitali, S.; Pecora, I.; Massa, V.; Lencioni, M.; Vasile, E.; Tintori, R. et al. Role of Baseline Computed-Tomography-Evaluated Body Composition in Predicting Outcome and Toxicity from First-Line Therapy in Advanced Gastric Cancer Patients. J. Clin. Med.; 2021; 10, 1079. [DOI: https://dx.doi.org/10.3390/jcm10051079]
18. Chai, V.W.; Chia, M.; Cocco, A.; Bhamidipaty, M.; D’Souza, B. Sarcopenia is a strong predictive factor of clinical and oncological outcomes following curative colorectal cancer resection. ANZ J. Surg.; 2021; 91, pp. E292-E297. [DOI: https://dx.doi.org/10.1111/ans.16706] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33682264]
19. Chang, Y.-R.; Huang, W.-K.; Wang, S.-Y.; Wu, C.-E.; Chen, J.-S.; Yeh, C.-N. A Nomogram Predicting Progression Free Survival in Patients with Gastrointestinal Stromal Tumor Receiving Sunitinib: Incorporating Pre-Treatment and Post-Treatment Parameters. Cancers; 2021; 13, 2587. [DOI: https://dx.doi.org/10.3390/cancers13112587] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34070456]
20. Chen, H.-W.; Chen, Y.-C.; Yang, L.-H.; Shih, M.-C.P.; Li, C.-C.; Chueh, K.-S.; Wu, W.-J.; Juan, Y.-S. Impact of cachexia on oncologic outcomes of sarcopenic patients with upper tract urothelial carcinoma after radical nephroureterectomy. PLoS ONE; 2021; 16, e0250033. [DOI: https://dx.doi.org/10.1371/journal.pone.0250033]
21. Daffrè, E.; Prieto, M.; Martini, K.; Hoang-Thi, T.-N.; Halm, N.; Dermine, H.; Bobbio, A.; Chassagnon, G.; Revel, M.P.; Alifano, M. Total Psoas Area and Total Muscular Parietal Area Affect Long-Term Survival of Patients Undergoing Pneumonectomy for Non-Small Cell Lung Cancer. Cancers; 2021; 13, 1888. [DOI: https://dx.doi.org/10.3390/cancers13081888]
22. Ferini, G.; Cacciola, A.; Parisi, S.; Lillo, S.; Molino, L.; Tamburella, C.; Davi, V.; Napoli, I.; Platania, A.; Settineri, N. et al. Curative Radiotherapy in Elderly Patients with Muscle Invasive Bladder Cancer: The Prognostic Role of Sarcopenia. In Vivo; 2021; 35, pp. 571-578. [DOI: https://dx.doi.org/10.21873/invivo.12293]
23. Haik, L.; Gonthier, A.; Quivy, A.; Gross-goupil, M.; Veillon, R.; Frison, E.; Ravaud, A.; Domblides, C.; Daste, A. The impact of sarcopenia on the efficacy and safety of immune checkpoint inhibitors in patients with solid tumours. Acta Oncol.; 2021; 60, pp. 1597-1603. [DOI: https://dx.doi.org/10.1080/0284186X.2021.1978540]
24. Hsu, T.-M.H.; Schawkat, K.; Berkowitz, S.J.; Wei, J.L.; Makoyeva, A.; Legare, K.; DeCicco, C.; Paez, S.N.; Wu, J.S.H.; Szolovits, P. et al. Artificial intelligence to assess body composition on routine abdominal CT scans and predict mortality in pancreatic cancer– A recipe for your local application. Eur. J. Radiol.; 2021; 142, 109834. [DOI: https://dx.doi.org/10.1016/j.ejrad.2021.109834]
25. Hu, W.-H.; Chang, C.-D.; Liu, T.-T.; Chen, H.-H.; Hsiao, C.-C.; Kang, H.-Y.; Chuang, J.-H. Association of sarcopenia and expression of interleukin-23 in colorectal cancer survival. Clin. Nutr.; 2021; 40, pp. 5322-5326. [DOI: https://dx.doi.org/10.1016/j.clnu.2021.08.016] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34536640]
26. Huang, D.-D.; Cai, H.-Y.; Wang, W.-B.; Song, H.-N.; Luo, X.; Dong, W.-X.; Dong, Q.-T.; Chen, X.-L.; Yan, J.-Y. Measurement of muscle quantity/quality has additional predictive value for postoperative complications and long-term survival after gastrectomy for gastric cancer in patients with probable sarcopenia as defined by the new EWGSOP2 consensus: Analysis from a large-scale prospective study. Nutrition; 2021; 86, 111156. [DOI: https://dx.doi.org/10.1016/j.nut.2021.111156] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33601124]
27. Kim, J.; Han, S.H.; Kim, H. Detection of sarcopenic obesity and prediction of long-term survival in patients with gastric cancer using preoperative computed tomography and machine learning. J. Surg. Oncol.; 2021; 124, pp. 1347-1355. [DOI: https://dx.doi.org/10.1002/jso.26668] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34490899]
28. Kim, G.H.; Choi, K.D.; Ko, Y.; Park, T.; Kim, K.W.; Park, S.Y.; Na, H.K.; Ahn, J.Y.; Lee, J.H.; Jung, K.W. et al. Impact of Comorbidities, Sarcopenia, and Nutritional Status on the Long-Term Outcomes after Endoscopic Submucosal Dissection for Early Gastric Cancer in Elderly Patients Aged ≥ 80 Years. Cancers; 2021; 13, 3598. [DOI: https://dx.doi.org/10.3390/cancers13143598]
29. Kawaguchi, Y.; Hanaoka, J.; Ohshio, Y.; Okamoto, K.; Kaku, R.; Hayashi, K.; Shiratori, T.; Akazawa, A. Sarcopenia increases the risk of post-operative recurrence in patients with non-small cell lung cancer. PLoS ONE; 2021; 16, e0257594. [DOI: https://dx.doi.org/10.1371/journal.pone.0257594] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34551011]
30. Juris, A.; Taylor-Gehman, A.; Spencer, B.; Schaefer, E.; Pameijer, C. The Impact of Sarcopenia in Patients with Peritoneal Surface Disease. Pathol. Oncol. Res.; 2021; 27, 638857. [DOI: https://dx.doi.org/10.3389/pore.2021.638857]
31. Jullien, M.; Tessoulin, B.; Ghesquières, H.; Oberic, L.; Morschhauser, F.; Tilly, H.; Ribrag, V.; Lamy, T.; Thieblemont, C.; Villemagne, B. et al. Deep-Learning Assessed Muscular Hypodensity Independently Predicts Mortality in DLBCL Patients Younger than 60 Years. Cancers; 2021; 13, 4503. [DOI: https://dx.doi.org/10.3390/cancers13184503] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34572728]
32. Jalal, M.; Campbell, J.A.; Wadsley, J.; Hopper, A.D. Computed Tomographic Sarcopenia in Pancreatic Cancer: Further Utilization to Plan Patient Management. J. Gastrointest. Cancer; 2021; 52, pp. 1183-1187. [DOI: https://dx.doi.org/10.1007/s12029-021-00672-4] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34292498]
33. Kirsten, J.; Wais, V.; Schulz, S.V.W.; Sala, E.; Treff, G.; Bunjes, D.; Steinacker, J.M. Sarcopenia Screening Allows Identifying High-Risk Patients for Allogenic Stem Cell Transplantation. Cancers; 2021; 13, 1771. [DOI: https://dx.doi.org/10.3390/cancers13081771] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33917738]
34. Kim, N.; Yu, J.I.; Lim, D.H.; Lee, J.; Kim, S.T.; Hong, J.Y.; Kang, W.K.; Jeong, W.K.; Kim, K.-M. Prognostic Impact of Sarcopenia and Radiotherapy in Patients with Advanced Gastric Cancer Treated with Anti-PD-1 Antibody. Front. Immunol.; 2021; 12, 701668. [DOI: https://dx.doi.org/10.3389/fimmu.2021.701668] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34305941]
35. Leone, R.; Sferruzza, G.; Calimeri, T.; Steffanoni, S.; Conte, G.M.; De Cobelli, F.; Falini, A.; Ferreri, A.J.M.; Anzalone, N. Quantitative muscle mass biomarkers are independent prognosis factors in primary central nervous system lymphoma: The role of L3-skeletal muscle index and temporal muscle thickness. Eur. J. Radiol.; 2021; 143, 109945. [DOI: https://dx.doi.org/10.1016/j.ejrad.2021.109945] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34492625]
36. Lee, C.H.; Ku, J.Y.; Seo, W.I.; Park, Y.J.; Chung, J.I.; Kim, W.; Park, T.Y.; Ha, H.K. Prognostic significance of sarcopenia and decreased relative dose intensity during the initial two cycles of first-line sunitinib for metastatic renal cell carcinoma. J. Chemother.; 2021; 33, pp. 245-255. [DOI: https://dx.doi.org/10.1080/1120009X.2020.1866825] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33412998]
37. Liang, H.; Peng, H.; Chen, L. Prognostic Value of Sarcopenia and Systemic Inflammation Markers in Patients Undergoing Definitive Radiotherapy for Esophageal Cancer. Cancer Manag. Res.; 2021; 13, pp. 181-192. [DOI: https://dx.doi.org/10.2147/CMAR.S288522] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33469362]
38. Makal, G.B.; Aslan, A. Is sarcopenia really a risk factor in the development of postoperative complications?. Surg. Oncol.; 2021; 37, 101527. [DOI: https://dx.doi.org/10.1016/j.suronc.2021.101527] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33548587]
39. Nilsson, M.P.; Johnsson, A.; Scherman, J. Sarcopenia and dosimetric parameters in relation to treatment-related leukopenia and survival in anal cancer. Radiat. Oncol.; 2021; 16, 152. [DOI: https://dx.doi.org/10.1186/s13014-021-01876-5] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34399812]
40. Takeda, T.; Sasaki, T.; Suzumori, C.; Mie, T.; Furukawa, T.; Yamada, Y.; Kasuga, A.; Matsuyama, M.; Ozaka, M.; Sasahira, N. The impact of cachexia and sarcopenia in elderly pancreatic cancer patients receiving palliative chemotherapy. Int. J. Clin. Oncol.; 2021; 26, pp. 1293-1303. [DOI: https://dx.doi.org/10.1007/s10147-021-01912-0]
41. Takiguchi, K.; Furuya, S.; Sudo, M.; Saito, R.; Yamamoto, A.; Ashizawa, N.; Hirayama, K.; Shoda, K.; Akaike, H.; Hosomura, N. et al. Prognostic effect of sarcopenia in colorectal cancer recurrence. Nutrition; 2021; 91–92, 111362. [DOI: https://dx.doi.org/10.1016/j.nut.2021.111362]
42. Thureau, S.; Lebret, L.; Lequesne, J.; Cabourg, M.; Dandoy, S.; Gouley, C.; Lefebvre, L.; Mallet, R.; Mihailescu, S.-D.; Moldovan, C. et al. Prospective Evaluation of Sarcopenia in Head and Neck Cancer Patients Treated with Radiotherapy or Radiochemotherapy. Cancers; 2021; 13, 753. [DOI: https://dx.doi.org/10.3390/cancers13040753] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33670339]
43. Troschel, F.M.; Jin, Q.; Eichhorn, F.; Muley, T.; Best, T.D.; Leppelmann, K.S.; Yang, C.-F.J.; Troschel, A.S.; Winter, H.; Heußel, C.P. et al. Sarcopenia on preoperative chest computed tomography predicts cancer-specific and all-cause mortality following pneumonectomy for lung cancer: A multicenter analysis. Cancer Med.; 2021; 10, pp. 6677-6686. [DOI: https://dx.doi.org/10.1002/cam4.4207] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34409756]
44. Trussardi Fayh, A.P.; de Sousa, I.M. Comparison of revised EWGSOP2 criteria of sarcopenia in patients with cancer using different parameters of muscle mass. PLoS ONE; 2021; 16, e0257446. [DOI: https://dx.doi.org/10.1371/journal.pone.0257446] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34520502]
45. van den Berg, I.; Coebergh van den Braak, R.R.J.; van Vugt, J.L.A.; Ijzermans, J.N.M.; Buettner, S. Actual survival after resection of primary colorectal cancer: Results from a prospective multicenter study. World J. Surg. Oncol.; 2021; 19, 96. [DOI: https://dx.doi.org/10.1186/s12957-021-02207-4] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33820567]
46. Wu, W.-Y.; Dong, J.-J.; Huang, X.-C.; Chen, Z.-J.; Chen, X.-L.; Dong, Q.-T.; Bai, Y.-Y. AWGS2019 vs EWGSOP2 for diagnosing sarcopenia to predict long-term prognosis in Chinese patients with gastric cancer after radical gastrectomy. World J. Clin. Cases; 2021; 9, pp. 4668-4680. [DOI: https://dx.doi.org/10.12998/wjcc.v9.i18.4668] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34222433]
47. Xu, Y.-Y.; Zhou, X.-L.; Yu, C.-H.; Wang, W.-W.; Ji, F.-Z.; He, D.-C.; Zhu, W.-G.; Tong, Y.-S. Association of Sarcopenia with Toxicity and Survival in Postoperative Recurrent Esophageal Squamous Cell Carcinoma Patients Receiving Chemoradiotherapy. Front. Oncol.; 2021; 11, 655071. [DOI: https://dx.doi.org/10.3389/fonc.2021.655071]
48. Yamashita, S.; Iguchi, T.; Koike, H.; Wakamiya, T.; Kikkawa, K.; Kohjimoto, Y.; Hara, I. Impact of preoperative sarcopenia and myosteatosis on prognosis after radical cystectomy in patients with bladder cancer. Int. J. Urol.; 2021; 28, pp. 757-762. [DOI: https://dx.doi.org/10.1111/iju.14569] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33821510]
49. Zhang, F.-M.; Zhang, X.-Z.; Zhu, G.-L.; Lv, L.-Q.; Yan, X.-L.; Wu, W.-X.; Wang, S.-L.; Chen, X.-L.; Zhuang, C.-L.; Yu, Z. Impact of sarcopenia on clinical outcomes of patients with stage I gastric cancer after radical gastrectomy: A prospective cohort study. Eur. J. Surg. Oncol.; 2022; 48, pp. 541-547. [DOI: https://dx.doi.org/10.1016/j.ejso.2021.08.021]
50. Zilioli, V.R.; Albano, D.; Arcari, A.; Merli, F.; Coppola, A.; Besutti, G.; Marcheselli, L.; Gramegna, D.; Muzi, C.; Manicone, M. et al. Clinical and prognostic role of sarcopenia in elderly patients with classical Hodgkin lymphoma: A multicentre experience. J. Cachexia Sarcopenia Muscle; 2021; 12, pp. 1042-1055. [DOI: https://dx.doi.org/10.1002/jcsm.12736]
51. Zou, H.-B.; Yan, X.-L.; Dong, W.-X.; Yu, D.-Y.; Zhang, F.-M.; Zhou, L.-P.; Shen, Z.-L.; Cai, G.-J.; Zhuang, C.-L.; Yu, Z. Sarcopenia is a predictive factor of poor quality of life and prognosis in patients after radical gastrectomy. Eur. J. Surg. Oncol.; 2021; 47, pp. 1976-1984. [DOI: https://dx.doi.org/10.1016/j.ejso.2021.03.004]
52. Peng, H.; Tan, X. The Prognostic Significance of Sarcopenia and the Neutrophil-to-Lymphocyte Ratio in Elderly Patients with Esophageal Squamous Cell Carcinoma. Cancer Manag. Res.; 2021; 13, pp. 3209-3218. [DOI: https://dx.doi.org/10.2147/CMAR.S302274] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33880063]
53. Rinninella, E.; Strippoli, A.; Cintoni, M.; Raoul, P.; Vivolo, R.; Di Salvatore, M.; Genco, E.; Manfredi, R.; Bria, E.; Tortora, G. et al. Body Composition Changes in Gastric Cancer Patients during Preoperative FLOT Therapy: Preliminary Results of an Italian Cohort Study. Nutrients; 2021; 13, 960. [DOI: https://dx.doi.org/10.3390/nu13030960] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33809587]
54. Runkel, M.; Diallo, T.D.; Lang, S.A.; Bamberg, F.; Benndorf, M.; Fichtner-Feigl, S. The Role of Visceral Obesity, Sarcopenia and Sarcopenic Obesity on Surgical Outcomes after Liver Resections for Colorectal Metastases. World J. Surg.; 2021; 45, pp. 2218-2226. [DOI: https://dx.doi.org/10.1007/s00268-021-06073-9] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33842995]
55. Sakurai, K.; Kubo, N.; Tamamori, Y.; Aomatsu, N.; Nishii, T.; Tachimori, A.; Nishiguchi, Y.; Maeda, K. Depletion of skeletal muscle mass adversely affects long-term outcomes for men undergoing gastrectomy for gastric cancer. PLoS ONE; 2021; 16, e0256365. [DOI: https://dx.doi.org/10.1371/journal.pone.0256365] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34411190]
56. Sehouli, J.; Mueller, K.; Richter, R.; Anker, M.; Woopen, H.; Rasch, J.; Grabowski, J.P.; Prinz-Theissing, E.; Inci, M.G. Effects of sarcopenia and malnutrition on morbidity and mortality in gynecologic cancer surgery: Results of a prospective study. J. Cachexia Sarcopenia Muscle; 2021; 12, pp. 393-402. [DOI: https://dx.doi.org/10.1002/jcsm.12676]
57. Şengül Ayçiçek, G.; Erol, T.; Ünsal, P.; Deniz, O.; Abbasoğlu, O.; Halil, M. Impact of frailty and ultrasonography-based sarcopenia on the development of postoperative complications in gastrointestinal cancer patients. Turk. J. Med. Sci.; 2021; 51, pp. 1261-1266. [DOI: https://dx.doi.org/10.3906/sag-2012-242]
58. Sun, X.; Xu, J.; Chen, X.; Zhang, W.; Chen, W.; Zhu, C.; Sun, J.; Yang, X.; Wang, X.; Hu, Y. et al. Sarcopenia in Patients with Normal Body Mass Index Is an Independent Predictor for Postoperative Complication and Long-Term Survival in Gastric Cancer. Clin. Transl. Sci.; 2021; 14, pp. 837-846. [DOI: https://dx.doi.org/10.1111/cts.12940]
59. Pessia, B.; Giuliani, A.; Romano, L.; Bruno, F.; Carlei, F.; Vicentini, V.; Schietroma, M. The role of sarcopenia in the pancreatic adenocarcinoma. Eur. Rev. Med. Pharmacol. Sci.; 2021; 25, pp. 3670-3678. [DOI: https://dx.doi.org/10.26355/eurrev_202105_25933]
60. Choi, H.; Park, Y.S.; Na, K.J.; Park, S.; Park, I.K.; Kang, C.H.; Kim, Y.T.; Goo, J.M.; Yoon, S.H. Association of Adipopenia at Preoperative PET/CT with Mortality in Stage I Non-Small Cell Lung Cancer. Radiology; 2021; 301, pp. 645-653. [DOI: https://dx.doi.org/10.1148/radiol.2021210576]
61. Jang, H.Y.; Choi, G.H.; Hwang, S.H.; Jang, E.S.; Kim, J.-W.; Ahn, J.M.; Choi, Y.; Cho, J.Y.; Han, H.-S.; Lee, J. et al. Sarcopenia and visceral adiposity predict poor overall survival in hepatocellular carcinoma patients after curative hepatic resection. Transl. Cancer Res.; 2021; 10, pp. 854-866. [DOI: https://dx.doi.org/10.21037/tcr-20-2974]
62. Tenuta, M.; Gelibter, A.; Pandozzi, C.; Sirgiovanni, G.; Campolo, F.; Venneri, M.A.; Caponnetto, S.; Cortesi, E.; Marchetti, P.; Isidori, A.M. et al. Impact of Sarcopenia and Inflammation on Patients with Advanced Non-Small Cell Lung Cancer (NCSCL) Treated with Immune Checkpoint Inhibitors (ICIs): A Prospective Study. Cancers; 2021; 13, 6355. [DOI: https://dx.doi.org/10.3390/cancers13246355] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34944975]
63. Lee, J.H.; Jee, B.A.; Kim, J.-H.; Bae, H.; Chung, J.H.; Song, W.; Sung, H.H.; Jeon, H.G.; Jeong, B.C.; Seo, S.I. et al. Prognostic Impact of Sarcopenia in Patients with Metastatic Hormone-Sensitive Prostate Cancer. Cancers; 2021; 13, 6345. [DOI: https://dx.doi.org/10.3390/cancers13246345] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34944964]
64. Taniguchi, Y.; Kurokawa, Y.; Takahashi, T.; Saito, T.; Yamashita, K.; Tanaka, K.; Makino, T.; Yamasaki, M.; Nakajima, K.; Eguchi, H. et al. Impacts of Preoperative Psoas Muscle Mass and Visceral Fat Area on Postoperative Short- and Long-Term Outcomes in Patients with Gastric Cancer. World J. Surg.; 2021; 45, pp. 815-821. [DOI: https://dx.doi.org/10.1007/s00268-020-05857-9]
65. Deng, L.; Wang, Y.; Zhao, J.; Tong, Y.; Zhang, S.; Jin, C.; Chen, K.; Bao, W.; Yu, Z.; Chen, G. The prognostic value of sarcopenia combined with hepatolithiasis in intrahepatic cholangiocarcinoma patients after surgery: A prospective cohort study. Eur. J. Surg. Oncol.; 2021; 47, pp. 603-612. [DOI: https://dx.doi.org/10.1016/j.ejso.2020.09.002] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32933804]
66. Uemura, S.; Iwashita, T.; Ichikawa, H.; Iwasa, Y.; Mita, N.; Shiraki, M.; Shimizu, M. The impact of sarcopenia and decrease in skeletal muscle mass in patients with advanced pancreatic cancer during FOLFIRINOX therapy. Br. J. Nutr.; 2021; 125, pp. 1140-1147. [DOI: https://dx.doi.org/10.1017/S0007114520003463] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32883372]
67. Jung, A.R.; Roh, J.-L.; Kim, J.S.; Choi, S.-H.; Nam, S.Y.; Kim, S.Y. The impact of skeletal muscle depletion on older adult patients with head and neck cancer undergoing primary surgery. J. Geriatr. Oncol.; 2021; 12, pp. 128-133. [DOI: https://dx.doi.org/10.1016/j.jgo.2020.06.009]
68. Huang, X.; Lv, L.-N.; Zhao, Y.; Li, L.; Zhu, X.-D. Is skeletal muscle loss associated with chemoradiotherapy toxicity in nasopharyngeal carcinoma patients? A prospective study. Clin. Nutr.; 2021; 40, pp. 295-302. [DOI: https://dx.doi.org/10.1016/j.clnu.2020.05.020] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32507513]
69. Regnier, P.; De Luca, V.; Brunelle, S.; Sfumato, P.; Walz, J.; Rybikowski, S.; Maubon, T.; Branger, N.; Fakhfakh, S.; Durand, M. et al. Impact of sarcopenia status of muscle-invasive bladder cancer patients on kidney function after neoadjuvant chemotherapy. Minerva Urol. Nephrol.; 2021; 73, pp. 215-224. [DOI: https://dx.doi.org/10.23736/S2724-6051.20.03616-4]
70. Jin, K.; Tang, Y.; Wang, A.; Hu, Z.; Liu, C.; Zhou, H.; Yu, X. Body Composition and Response and Outcome of Neoadjuvant Treatment for Pancreatic Cancer. Nutr. Cancer; 2022; 74, pp. 100-109. [DOI: https://dx.doi.org/10.1080/01635581.2020.1870704]
71. Miura, A.; Yamamoto, H.; Sato, H.; Tomioka, Y.; Shiotani, T.; Suzawa, K.; Miyoshi, K.; Otani, S.; Okazaki, M.; Sugimoto, S. et al. The prognostic impact of sarcopenia on elderly patients undergoing pulmonary resection for non-small cell lung cancer. Surg. Today; 2021; 51, pp. 1203-1211. [DOI: https://dx.doi.org/10.1007/s00595-020-02221-1]
72. Takahashi, Y.; Suzuki, S.; Hamada, K.; Nakada, T.; Oya, Y.; Sakakura, N.; Matsushita, H.; Kuroda, H. Sarcopenia is poor risk for unfavorable short- and long-term outcomes in stage I non-small cell lung cancer. Ann. Transl. Med.; 2021; 9, 325. [DOI: https://dx.doi.org/10.21037/atm-20-4380] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33708952]
73. Silva, P.B.; Ramos, G.H.A.; Petterle, R.R.; Borba, V.Z.C. Sarcopenia as an early complication of patients with head and neck cancer with dysphagia. Eur. J. Cancer Care; 2021; 30, e13343. [DOI: https://dx.doi.org/10.1111/ecc.13343] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33043532]
74. Seror, M.; Sartoris, R.; Hobeika, C.; Bouattour, M.; Paradis, V.; Rautou, P.-E.; Soubrane, O.; Vilgrain, V.; Cauchy, F.; Ronot, M. Computed Tomography-Derived Liver Surface Nodularity and Sarcopenia as Prognostic Factors in Patients with Resectable Metabolic Syndrome-Related Hepatocellular Carcinoma. Ann. Surg. Oncol.; 2021; 28, pp. 405-416. [DOI: https://dx.doi.org/10.1245/s10434-020-09143-9] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32965614]
75. Badran, H.; Elsabaawy, M.M.; Ragab, A.; Abdelhafiz Aly, R.; Alsebaey, A.; Sabry, A. Baseline Sarcopenia is Associated with Lack of Response to Therapy, Liver Decompensation and High Mortality in Hepatocellular Carcinoma Patients. Asian Pac. J. Cancer Prev.; 2020; 21, pp. 3285-3290. [DOI: https://dx.doi.org/10.31557/APJCP.2020.21.11.3285]
76. Chen, W.S.; Huang, Y.S.; Xu, L.B.; Shi, M.M.; Chen, X.D.; Ye, G.Q.; Wu, T.T.; Zhu, G.B. Effects of sarcopenia, hypoalbuminemia, and laparoscopic surgery on postoperative complications in elderly patients with colorectal cancer: A prospective study. Neoplasma; 2020; 67, pp. 922-932. [DOI: https://dx.doi.org/10.4149/neo_2020_190908N882]
77. Fraisse, G.; Renard, Y.; Lebacle, C.; Masson-Lecomte, A.; Desgrandchamps, F.; Hennequin, C.; Bessede, T.; Irani, J. La sarcopénie est-elle un facteur de morbi-mortalité dans le traitement des tumeurs localisées de la vessie infiltrant le muscle ?. Prog. Urol.; 2020; 30, pp. 41-50. [DOI: https://dx.doi.org/10.1016/j.purol.2019.11.002]
78. Hirsch, L.; Bellesoeur, A.; Boudou-Rouquette, P.; Arrondeau, J.; Thomas-Schoemann, A.; Kirchgesner, J.; Gervais, C.; Jouinot, A.; Chapron, J.; Giraud, F. et al. The impact of body composition parameters on severe toxicity of nivolumab. Eur. J. Cancer; 2020; 124, pp. 170-177. [DOI: https://dx.doi.org/10.1016/j.ejca.2019.11.003]
79. Huang, C.-H.; Lue, K.-H.; Hsieh, T.-C.; Liu, S.-H.; Wang, T.-F.; Peng, T.-C. Association Between Sarcopenia and Clinical Outcomes in Patients with Esophageal Cancer Under Neoadjuvant Therapy. Anticancer Res.; 2020; 40, pp. 1175-1181. [DOI: https://dx.doi.org/10.21873/anticanres.14060]
80. Lanza, E.; Masetti, C.; Messana, G.; Muglia, R.; Pugliese, N.; Ceriani, R.; Lleo de Nalda, A.; Rimassa, L.; Torzilli, G.; Poretti, D. et al. Sarcopenia as a predictor of survival in patients undergoing bland transarterial embolization for unresectable hepatocellular carcinoma. PLoS ONE; 2020; 15, e0232371. [DOI: https://dx.doi.org/10.1371/journal.pone.0232371]
81. Tsukagoshi, M.; Yokobori, T.; Yajima, T.; Maeno, T.; Shimizu, K.; Mogi, A.; Araki, K.; Harimoto, N.; Shirabe, K.; Kaira, K. Skeletal muscle mass predicts the outcome of nivolumab treatment for non-small cell lung cancer. Medicine; 2020; 99, e19059. [DOI: https://dx.doi.org/10.1097/MD.0000000000019059]
82. Ueno, A.; Yamaguchi, K.; Sudo, M.; Imai, S. Sarcopenia as a risk factor of severe laboratory adverse events in breast cancer patients receiving perioperative epirubicin plus cyclophosphamide therapy. Support. Care Cancer; 2020; 28, pp. 4249-4254. [DOI: https://dx.doi.org/10.1007/s00520-019-05279-x] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31900607]
83. Pielkenrood, B.J.; van Urk, P.R.; van der Velden, J.M.; Kasperts, N.; Verhoeff, J.J.C.; Bol, G.H.; Verkooijen, H.M.; Verlaan, J.J. Impact of body fat distribution and sarcopenia on the overall survival in patients with spinal metastases receiving radiotherapy treatment: A prospective cohort study. Acta Oncol.; 2020; 59, pp. 291-297. [DOI: https://dx.doi.org/10.1080/0284186X.2019.1693059] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31760850]
84. Wang, P.; Chen, X.; Liu, Q.; Yu, Y.; Xu, L.; Liu, X.; Zhang, R.; Wang, Z.; Li, Y. Highlighting sarcopenia management for promoting surgical outcomes in esophageal cancers: Evidence from a prospective cohort study. Int. J. Surg.; 2020; 83, pp. 206-215. [DOI: https://dx.doi.org/10.1016/j.ijsu.2020.09.049] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33022414]
85. Martini, K.; Chassagnon, G.; Fournel, L.; Prieto, M.; Hoang-Thi, T.-N.; Halm, N.; Bobbio, A.; Revel, M.-P.; Alifano, M. Sarcopenia as independent risk factor of postpneumonectomy respiratory failure, ARDS and mortality. Lung Cancer; 2020; 149, pp. 130-136. [DOI: https://dx.doi.org/10.1016/j.lungcan.2020.09.009] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33011374]
86. Berardi, G.; Antonelli, G.; Colasanti, M.; Meniconi, R.; Guglielmo, N.; Laurenzi, A.; Ferretti, S.; Levi Sandri, G.B.; Spagnoli, A.; Moschetta, G. et al. Association of Sarcopenia and Body Composition with Short-term Outcomes after Liver Resection for Malignant Tumors. JAMA Surg.; 2020; 155, e203336. [DOI: https://dx.doi.org/10.1001/jamasurg.2020.3336]
87. den Boer, R.B.; Jones, K.I.; Ash, S.; van Boxel, G.I.; Gillies, R.S.; O’Donnell, T.; Ruurda, J.P.; Sgromo, B.; Silva, M.A.; Maynard, N.D. Impact on postoperative complications of changes in skeletal muscle mass during neoadjuvant chemotherapy for gastro-oesophageal cancer. BJS Open; 2020; 4, pp. 847-854. [DOI: https://dx.doi.org/10.1002/bjs5.50331]
88. Xu, L.-B.; Zhang, H.-H.; Shi, M.-M.; Huang, Z.-X.; Zhang, W.-T.; Chen, X.-D.; Cai, Y.-Q.; Zhu, G.-B.; Shen, X.; Chen, W.-J. Metabolic syndrome-related sarcopenia is associated with worse prognosis in patients with gastric cancer: A prospective study. Eur. J. Surg. Oncol.; 2020; 46, pp. 2262-2269. [DOI: https://dx.doi.org/10.1016/j.ejso.2020.07.032]
89. Yu, J.I.; Choi, C.; Lee, J.; Kang, W.K.; Park, S.H.; Kim, S.T.; Hong, J.Y.; Kim, S.; Sohn, T.S.; Lee, J.H. et al. Effect of baseline sarcopenia on adjuvant treatment for D2 dissected gastric cancer: Analysis of the ARTIST phase III trial. Radiother. Oncol.; 2020; 152, pp. 19-25. [DOI: https://dx.doi.org/10.1016/j.radonc.2020.07.043] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32739319]
90. Mishra, A.; Bigam, K.D.; Extermann, M.; Faramand, R.; Thomas, K.; Pidala, J.A.; Baracos, V.E. Sarcopenia and low muscle radiodensity associate with impaired FEV1 in allogeneic haematopoietic stem cell transplant recipients. J. Cachexia Sarcopenia Muscle; 2020; 11, pp. 1570-1579. [DOI: https://dx.doi.org/10.1002/jcsm.12604] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32729255]
91. Choi, K.; Jang, H.Y.; Ahn, J.M.; Hwang, S.H.; Chung, J.W.; Choi, Y.S.; Kim, J.-W.; Jang, E.S.; Choi, G.H.; Jeong, S.-H. The association of the serum levels of myostatin, follistatin, and interleukin-6 with sarcopenia, and their impacts on survival in patients with hepatocellular carcinoma. Clin. Mol. Hepatol.; 2020; 26, pp. 492-505. [DOI: https://dx.doi.org/10.3350/cmh.2020.0005]
92. Benadon, B.; Servagi-Vernat, S.; Quero, L.; Cattan, P.; Guillerm, S.; Hennequin, V.; Aparicio, T.; Lourenço, N.; Bouché, O.; Hennequin, C. Sarcopenia: An important prognostic factor for males treated for a locally advanced esophageal carcinoma. Dig. Liver Dis.; 2020; 52, pp. 1047-1052. [DOI: https://dx.doi.org/10.1016/j.dld.2020.04.009]
93. Mallet, R.; Modzelewski, R.; Lequesne, J.; Mihailescu, S.; Decazes, P.; Auvray, H.; Benyoucef, A.; Di Fiore, F.; Vera, P.; Dubray, B. et al. Prognostic value of sarcopenia in patients treated by Radiochemotherapy for locally advanced oesophageal cancer. Radiat. Oncol.; 2020; 15, 116. [DOI: https://dx.doi.org/10.1186/s13014-020-01545-z] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32443967]
94. Ryu, Y.; Shin, S.H.; Kim, J.-H.; Jeong, W.K.; Park, D.J.; Kim, N.; Heo, J.S.; Choi, D.W.; Han, I.W. The effects of sarcopenia and sarcopenic obesity after pancreaticoduodenectomy in patients with pancreatic head cancer. HPB; 2020; 22, pp. 1782-1792. [DOI: https://dx.doi.org/10.1016/j.hpb.2020.04.004] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32354655]
95. Giani, A.; Famularo, S.; Riva, L.; Tamini, N.; Ippolito, D.; Nespoli, L.; Conconi, P.; Sironi, S.; Braga, M.; Gianotti, L. Association between specific presurgical anthropometric indexes and morbidity in patients undergoing rectal cancer resection. Nutrition; 2020; 75–76, 110779. [DOI: https://dx.doi.org/10.1016/j.nut.2020.110779] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32268263]
96. van Rijn-Dekker, M.I.; van den Bosch, L.; van den Hoek, J.G.M.; Bijl, H.P.; van Aken, E.S.M.; van der Hoorn, A.; Oosting, S.F.; Halmos, G.B.; Witjes, M.J.H.; van der Laan, H.P. et al. Impact of sarcopenia on survival and late toxicity in head and neck cancer patients treated with radiotherapy. Radiother. Oncol.; 2020; 147, pp. 103-110. [DOI: https://dx.doi.org/10.1016/j.radonc.2020.03.014] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32251949]
97. Srpcic, M.; Jordan, T.; Popuri, K.; Sok, M. Sarcopenia and myosteatosis at presentation adversely affect survival after esophagectomy for esophageal cancer. Radiol. Oncol.; 2020; 54, pp. 237-246. [DOI: https://dx.doi.org/10.2478/raon-2020-0016] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32229679]
98. Roch, B.; Coffy, A.; Jean-Baptiste, S.; Palaysi, E.; Daures, J.-P.; Pujol, J.-L.; Bommart, S. Cachexia—Sarcopenia as a determinant of disease control rate and survival in non-small lung cancer patients receiving immune-checkpoint inhibitors. Lung Cancer; 2020; 143, pp. 19-26. [DOI: https://dx.doi.org/10.1016/j.lungcan.2020.03.003]
99. Agalar, C.; Sokmen, S.; Arslan, C.; Altay, C.; Basara, I.; Canda, A.E.; Obuz, F. The impact of sarcopenia on morbidity and long-term survival among patients with peritoneal metastases of colorectal origin treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy: A 10-year longitudinal analysis of a single-center experience. Tech. Coloproctol.; 2020; 24, pp. 301-308. [DOI: https://dx.doi.org/10.1007/s10151-020-02159-z]
100. Shinohara, S.; Otsuki, R.; Kobayashi, K.; Sugaya, M.; Matsuo, M.; Nakagawa, M. Impact of Sarcopenia on Surgical Outcomes in Non-Small Cell Lung Cancer. Ann. Surg. Oncol.; 2020; 27, pp. 2427-2435. [DOI: https://dx.doi.org/10.1245/s10434-020-08224-z] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31970570]
101. Salman, M.A.; Omar, H.S.E.; Mikhail, H.M.S.; Tourky, M.; El-ghobary, M.; Elkassar, H.; Omar, M.G.; Matter, M.; Elbasiouny, A.M.; Farag, A.M. et al. Sarcopenia increases 1-year mortality after surgical resection of hepatocellular carcinoma. ANZ J. Surg.; 2020; 90, pp. 781-785. [DOI: https://dx.doi.org/10.1111/ans.15647] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31943655]
102. Stangl-Kremser, J.; Suarez-Ibarrola, R.; Andrea, D.D.; Korn, S.M.; Pones, M.; Kramer, G.; Marhold, M.; Krainer, M.; Enikeev, D.V.; Glybochko, P.V. et al. Assessment of body composition in the advanced stage of castration-resistant prostate cancer: Special focus on sarcopenia. Prostate Cancer Prostatic Dis.; 2020; 23, pp. 309-315. [DOI: https://dx.doi.org/10.1038/s41391-019-0186-6] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31745255]
103. Zhuang, C.-L.; Shen, X.; Zou, H.-B.; Dong, Q.-T.; Cai, H.-Y.; Chen, X.-L.; Yu, Z.; Wang, S.-L. EWGSOP2 versus EWGSOP1 for sarcopenia to predict prognosis in patients with gastric cancer after radical gastrectomy: Analysis from a large-scale prospective study. Clin. Nutr.; 2020; 39, pp. 2301-2310. [DOI: https://dx.doi.org/10.1016/j.clnu.2019.10.024] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31732287]
104. Hendrickson, N.R.; Mayo, Z.; Shamrock, A.; Kesler, K.; Glass, N.; Nau, P.; Miller, B.J. Sarcopenia is associated with increased mortality but not complications following resection and reconstruction of sarcoma of the extremities. J. Surg. Oncol.; 2020; 121, pp. 1241-1248. [DOI: https://dx.doi.org/10.1002/jso.25898] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32162343]
105. Yumioka, T.; Honda, M.; Nishikawa, R.; Teraoka, S.; Kimura, Y.; Iwamoto, H.; Morizane, S.; Hikita, K.; Takenaka, A. Sarcopenia as a significant predictive factor of neutropenia and overall survival in urothelial carcinoma patients underwent gemcitabine and cisplatin or carboplatin. Int. J. Clin. Oncol.; 2020; 25, pp. 158-164. [DOI: https://dx.doi.org/10.1007/s10147-019-01544-5] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31520176]
106. Oflazoglu, U.; Alacacioglu, A.; Varol, U.; Kucukzeybek, Y.; Salman, T.; Taskaynatan, H.; Yildiz, Y.; Ozdemir, O.; Tarhan, M. Prevalence and related factors of sarcopenia in newly diagnosed cancer patients. Support. Care Cancer; 2020; 28, pp. 837-843. [DOI: https://dx.doi.org/10.1007/s00520-019-04880-4] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31161438]
107. Lee, E.C.; Park, S.-J.; Lee, S.D.; Han, S.-S.; Kim, S.H. Effects of Sarcopenia on Prognosis after Resection of Gallbladder Cancer. J. Gastrointest. Surg.; 2020; 24, pp. 1082-1091. [DOI: https://dx.doi.org/10.1007/s11605-019-04198-w]
108. Martin, L.; Gioulbasanis, I.; Senesse, P.; Baracos, V.E. Cancer-Associated Malnutrition and CT-Defined Sarcopenia and Myosteatosis Are Endemic in Overweight and Obese Patients. J. Parenter. Enter. Nutr.; 2020; 44, pp. 227-238. [DOI: https://dx.doi.org/10.1002/jpen.1597]
109. Couderc, A.-L.; Muracciole, X.; Nouguerede, E.; Rey, D.; Schneider, S.; Champsaur, P.; Lechevallier, E.; Lalys, L.; Villani, P. HoSAGE: Sarcopenia in Older Patients before and after Treatment with Androgen Deprivation Therapy and Radiotherapy for Prostate Cancer. J. Nutr. Health Aging; 2020; 24, pp. 205-209. [DOI: https://dx.doi.org/10.1007/s12603-019-1294-7]
110. He, W.-Z.; Jiang, C.; Liu, L.-L.; Yin, C.-X.; Rong, Y.-M.; Hu, W.-M.; Yang, L.; Wang, L.; Jin, Y.-N.; Lin, X.-P. et al. Association of body composition with survival and inflammatory responses in patients with non-metastatic nasopharyngeal cancer. Oral Oncol.; 2020; 108, 104771. [DOI: https://dx.doi.org/10.1016/j.oraloncology.2020.104771]
111. Chen, X.-Y.; Li, B.; Ma, B.-W.; Zhang, X.-Z.; Chen, W.-Z.; Lu, L.-S.; Shen, X.; Zhuang, C.-L.; Yu, Z. Sarcopenia is an effective prognostic indicator of postoperative outcomes in laparoscopic-assisted gastrectomy. Eur. J. Surg. Oncol.; 2019; 45, pp. 1092-1098. [DOI: https://dx.doi.org/10.1016/j.ejso.2018.09.030]
112. Dijksterhuis, W.P.M.; Pruijt, M.J.; van der Woude, S.O.; Klaassen, R.; Kurk, S.A.; van Oijen, M.G.H.; van Laarhoven, H.W.M. Association between body composition, survival, and toxicity in advanced esophagogastric cancer patients receiving palliative chemotherapy. J. Cachexia Sarcopenia Muscle; 2019; 10, pp. 199-206. [DOI: https://dx.doi.org/10.1002/jcsm.12371] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30666831]
113. Dolan, R.D.; Almasaudi, A.S.; Dieu, L.B.; Horgan, P.G.; McSorley, S.T.; McMillan, D.C. The relationship between computed tomography-derived body composition, systemic inflammatory response, and survival in patients undergoing surgery for colorectal cancer. J. Cachexia Sarcopenia Muscle; 2019; 10, pp. 111-122. [DOI: https://dx.doi.org/10.1002/jcsm.12357]
114. de Paula, N.S.; Rodrigues, C.S.; Chaves, G.V. Comparison of the prognostic value of different skeletal muscle radiodensity parameters in endometrial cancer. Eur. J. Clin. Nutr.; 2019; 73, pp. 524-530. [DOI: https://dx.doi.org/10.1038/s41430-018-0163-5]
115. Griffin, O.M.; Duggan, S.N.; Ryan, R.; McDermott, R.; Geoghegan, J.; Conlon, K.C. Characterising the impact of body composition change during neoadjuvant chemotherapy for pancreatic cancer. Pancreatology; 2019; 19, pp. 850-857. [DOI: https://dx.doi.org/10.1016/j.pan.2019.07.039] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31362865]
116. Hopkins, J.J.; Reif, R.L.; Bigam, D.L.; Baracos, V.E.; Eurich, D.T.; Sawyer, M.B. The Impact of Muscle and Adipose Tissue on Long-Term Survival in Patients with Stage I to III Colorectal Cancer. Dis. Colon Rectum; 2019; 62, pp. 549-560. [DOI: https://dx.doi.org/10.1097/DCR.0000000000001352]
117. Jung, A.R.; Roh, J.-L.; Kim, J.S.; Kim, S.-B.; Choi, S.-H.; Nam, S.Y.; Kim, S.Y. Prognostic value of body composition on recurrence and survival of advanced-stage head and neck cancer. Eur. J. Cancer; 2019; 116, pp. 98-106. [DOI: https://dx.doi.org/10.1016/j.ejca.2019.05.006]
118. Huillard, O.; Jouinot, A.; Tlemsani, C.; Brose, M.S.; Arrondeau, J.; Meinhardt, G.; Fellous, M.; De Sanctis, Y.; Schlumberger, M.; Goldwasser, F. Body Composition in Patients with Radioactive Iodine-Refractory, Advanced Differentiated Thyroid Cancer Treated with Sorafenib or Placebo: A Retrospective Analysis of the Phase III DECISION Trial. Thyroid; 2019; 29, pp. 1820-1827. [DOI: https://dx.doi.org/10.1089/thy.2018.0784] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31860408]
119. Kitano, Y.; Yamashita, Y.; Saito, Y.; Nakagawa, S.; Okabe, H.; Imai, K.; Komohara, Y.; Miyamoto, Y.; Chikamoto, A.; Ishiko, T. et al. Sarcopenia Affects Systemic and Local Immune System and Impacts Postoperative Outcome in Patients with Extrahepatic Cholangiocarcinoma. World J. Surg.; 2019; 43, pp. 2271-2280. [DOI: https://dx.doi.org/10.1007/s00268-019-05013-y] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31041559]
120. Kurk, S.; Peeters, P.; Stellato, R.; Dorresteijn, B.; de Jong, P.; Jourdan, M.; Creemers, G.; Erdkamp, F.; de Jongh, F.; Kint, P. et al. Skeletal muscle mass loss and dose-limiting toxicities in metastatic colorectal cancer patients. J. Cachexia Sarcopenia Muscle; 2019; 10, pp. 803-813. [DOI: https://dx.doi.org/10.1002/jcsm.12436] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31094083]
121. Lin, J.; Zhang, W.; Chen, W.; Huang, Y.; Wu, R.; Chen, X.; Shen, X.; Zhu, G. Muscle Mass, Density, and Strength Are Necessary to Diagnose Sarcopenia in Patients with Gastric Cancer. J. Surg. Res.; 2019; 241, pp. 141-148. [DOI: https://dx.doi.org/10.1016/j.jss.2019.03.022]
122. Matsunaga, T.; Miyata, H.; Sugimura, K.; Motoori, M.; Asukai, K.; Yanagimoto, Y.; Takahashi, Y.; Tomokuni, A.; Yamamoto, K.; Akita, H. et al. Prognostic Significance of Sarcopenia and Systemic Inflammatory Response in Patients with Esophageal Cancer. Anticancer Res.; 2019; 39, pp. 449-458. [DOI: https://dx.doi.org/10.21873/anticanres.13133] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30591494]
123. Tamura, T.; Sakurai, K.; Nambara, M.; Miki, Y.; Toyokawa, T.; Kubo, N.; Tanaka, H.; Muguruma, K.; Yashiro, M.; Ohira, M. Adverse Effects of Preoperative Sarcopenia on Postoperative Complications of Patients with Gastric Cancer. Anticancer Res.; 2019; 39, pp. 987-992. [DOI: https://dx.doi.org/10.21873/anticanres.13203]
124. Vashi, P.G.; Gorsuch, K.; Wan, L.; Hill, D.; Block, C.; Gupta, D. Sarcopenia supersedes subjective global assessment as a predictor of survival in colorectal cancer. PLoS ONE; 2019; 14, e0218761. [DOI: https://dx.doi.org/10.1371/journal.pone.0218761] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31220163]
125. Yamamoto, K.; Hirao, M.; Nishikawa, K.; Omori, T.; Yanagimoto, Y.; Shinno, N.; Sugimura, K.; Miyata, H.; Wada, H.; Takahashi, H. et al. Sarcopenia Is Associated with Impaired Overall Survival after Gastrectomy for Elderly Gastric Cancer. Anticancer Res.; 2019; 39, pp. 4297-4303. [DOI: https://dx.doi.org/10.21873/anticanres.13595] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31366521]
126. Yang, J.; Zhang, T.; Feng, D.; Dai, X.; Lv, T.; Wang, X.; Gong, J.; Zhu, W.; Li, J. A new diagnostic index for sarcopenia and its association with short-term postoperative complications in patients undergoing surgery for colorectal cancer. Colorectal Dis.; 2019; 21, pp. 538-547. [DOI: https://dx.doi.org/10.1111/codi.14558] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30648340]
127. Okabe, H.; Ohsaki, T.; Ogawa, K.; Ozaki, N.; Hayashi, H.; Akahoshi, S.; Ikuta, Y.; Ogata, K.; Baba, H.; Takamori, H. Frailty predicts severe postoperative complications after elective colorectal surgery. Am. J. Surg.; 2019; 217, pp. 677-681. [DOI: https://dx.doi.org/10.1016/j.amjsurg.2018.07.009] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30473227]
128. Otten, L.; Stobäus, N.; Franz, K.; Genton, L.; Müller-Werdan, U.; Wirth, R.; Norman, K. Impact of sarcopenia on 1-year mortality in older patients with cancer. Age Ageing; 2019; 48, pp. 413-418. [DOI: https://dx.doi.org/10.1093/ageing/afy212] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30608508]
129. Panje, C.M.; Höng, L.; Hayoz, S.; Baracos, V.E.; Herrmann, E.; Garcia Schüler, H.; Meier, U.R.; Henke, G.; Schacher, S.; Hawle, H. et al. Skeletal muscle mass correlates with increased toxicity during neoadjuvant radiochemotherapy in locally advanced esophageal cancer: A SAKK 75/08 substudy. Radiat. Oncol.; 2019; 14, 166. [DOI: https://dx.doi.org/10.1186/s13014-019-1372-3] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31511012]
130. Sasaki, S.; Oki, E.; Saeki, H.; Shimose, T.; Sakamoto, S.; Hu, Q.; Kudo, K.; Tsuda, Y.; Nakashima, Y.; Ando, K. et al. Skeletal muscle loss during systemic chemotherapy for colorectal cancer indicates treatment response: A pooled analysis of a multicenter clinical trial (KSCC 1605-A). Int. J. Clin. Oncol.; 2019; 24, pp. 1204-1213. [DOI: https://dx.doi.org/10.1007/s10147-019-01460-8]
131. Shi, B.; Liu, S.; Chen, J.; Liu, J.; Luo, Y.; Long, L.; Lan, Q.; Zhang, Y. Sarcopenia Is Associated with Perioperative Outcomes in Gastric Cancer Patients Undergoing Gastrectomy. Ann. Nutr. Metab.; 2019; 75, pp. 213-222. [DOI: https://dx.doi.org/10.1159/000504283] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31846973]
132. da Silva, J.R.; Wiegert, E.V.M.; Oliveira, L.; Calixto-Lima, L. Different methods for diagnosis of sarcopenia and its association with nutritional status and survival in patients with advanced cancer in palliative care. Nutrition; 2019; 60, pp. 48-52. [DOI: https://dx.doi.org/10.1016/j.nut.2018.09.003] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30529186]
133. Charette, N.; Vandeputte, C.; Ameye, L.; Bogaert, C.V.; Krygier, J.; Guiot, T.; Deleporte, A.; Delaunoit, T.; Geboes, K.; Van Laethem, J.-L. et al. Prognostic value of adipose tissue and muscle mass in advanced colorectal cancer: A post hoc analysis of two non-randomized phase II trials. BMC Cancer; 2019; 19, 134. [DOI: https://dx.doi.org/10.1186/s12885-019-5319-8] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30744591]
134. Jang, M.; Park, H.W.; Huh, J.; Lee, J.H.; Jeong, Y.K.; Nah, Y.W.; Park, J.; Kim, K.W. Predictive value of sarcopenia and visceral obesity for postoperative pancreatic fistula after pancreaticoduodenectomy analyzed on clinically acquired CT and MRI. Eur. Radiol.; 2019; 29, pp. 2417-2425. [DOI: https://dx.doi.org/10.1007/s00330-018-5790-7] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30406311]
135. Kiss, N.; Beraldo, J.; Everitt, S. Early Skeletal Muscle Loss in Non-Small Cell Lung Cancer Patients Receiving Chemoradiation and Relationship to Survival. Support. Care Cancer; 2019; 27, pp. 2657-2664. [DOI: https://dx.doi.org/10.1007/s00520-018-4563-9] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30478673]
136. Kurita, Y.; Kobayashi, N.; Tokuhisa, M.; Goto, A.; Kubota, K.; Endo, I.; Nakajima, A.; Ichikawa, Y. Sarcopenia is a reliable prognostic factor in patients with advanced pancreatic cancer receiving FOLFIRINOX chemotherapy. Pancreatology; 2019; 19, pp. 127-135. [DOI: https://dx.doi.org/10.1016/j.pan.2018.11.001]
137. Nakamura, N.; Ninomiya, S.; Matsumoto, T.; Nakamura, H.; Kitagawa, J.; Shiraki, M.; Hara, T.; Shimizu, M.; Tsurumi, H. Prognostic impact of skeletal muscle assessed by computed tomography in patients with acute myeloid leukemia. Ann. Hematol.; 2019; 98, pp. 351-359. [DOI: https://dx.doi.org/10.1007/s00277-018-3508-1] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30341537]
138. Ma, B.-W.; Chen, X.-Y.; Fan, S.-D.; Zhang, F.-M.; Huang, D.-D.; Li, B.; Shen, X.; Zhuang, C.-L.; Yu, Z. Impact of sarcopenia on clinical outcomes after radical gastrectomy for patients without nutritional risk. Nutrition; 2019; 61, pp. 61-66. [DOI: https://dx.doi.org/10.1016/j.nut.2018.10.025]
139. Wang, P.; Li, Y.; Sun, H.; Zhang, R.; Liu, X.; Liu, S.; Wang, Z.; Zheng, Y.; Yu, Y.; Chen, X. et al. Analysis of the associated factors for severe weight loss after minimally invasive McKeown esophagectomy. Thorac. Cancer; 2019; 10, pp. 209-218. [DOI: https://dx.doi.org/10.1111/1759-7714.12934]
140. Soma, D.; Kawamura, Y.I.; Yamashita, S.; Wake, H.; Nohara, K.; Yamada, K.; Kokudo, N. Sarcopenia, the depletion of muscle mass, an independent predictor of respiratory complications after oncological esophagectomy. Dis. Esophagus; 2019; 32, doy092. [DOI: https://dx.doi.org/10.1093/dote/doy092]
141. Zhang, S.; Tan, S.; Jiang, Y.; Xi, Q.; Meng, Q.; Zhuang, Q.; Han, Y.; Sui, X.; Wu, G. Sarcopenia as a predictor of poor surgical and oncologic outcomes after abdominal surgery for digestive tract cancer: A prospective cohort study. Clin. Nutr.; 2019; 38, pp. 2881-2888. [DOI: https://dx.doi.org/10.1016/j.clnu.2018.12.025]
142. Ataseven, B.; Luengo, T.G.; du Bois, A.; Waltering, K.-U.; Traut, A.; Heitz, F.; Alesina, P.F.; Prader, S.; Meier, B.; Schneider, S. et al. Skeletal Muscle Attenuation (Sarcopenia) Predicts Reduced Overall Survival in Patients with Advanced Epithelial Ovarian Cancer Undergoing Primary Debulking Surgery. Ann. Surg. Oncol.; 2018; 25, pp. 3372-3379. [DOI: https://dx.doi.org/10.1245/s10434-018-6683-3] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30069659]
143. Banaste, N.; Rousset, P.; Mercier, F.; Rieussec, C.; Valette, P.-J.; Glehen, O.; Passot, G. Preoperative nutritional risk assessment in patients undergoing cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy for colorectal carcinomatosis. Int. J. Hyperth.; 2018; 34, pp. 589-594. [DOI: https://dx.doi.org/10.1080/02656736.2017.1371342]
144. Chambard, L.; Girard, N.; Ollier, E.; Rousseau, J.-C.; Duboeuf, F.; Carlier, M.-C.; Brevet, M.; Szulc, P.; Pialat, J.-B.; Wegrzyn, J. et al. Bone, muscle, and metabolic parameters predict survival in patients with synchronous bone metastases from lung cancers. Bone; 2018; 108, pp. 202-209. [DOI: https://dx.doi.org/10.1016/j.bone.2018.01.004]
145. Chen, W.-Z.; Chen, X.-D.; Ma, L.-L.; Zhang, F.-M.; Lin, J.; Zhuang, C.-L.; Yu, Z.; Chen, X.-L.; Chen, X.-X. Impact of Visceral Obesity and Sarcopenia on Short-Term Outcomes after Colorectal Cancer Surgery. Dig. Dis. Sci.; 2018; 63, pp. 1620-1630. [DOI: https://dx.doi.org/10.1007/s10620-018-5019-2] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29549473]
146. Kawamura, T.; Makuuchi, R.; Tokunaga, M.; Tanizawa, Y.; Bando, E.; Yasui, H.; Aoyama, T.; Inano, T.; Terashima, M. Long-Term Outcomes of Gastric Cancer Patients with Preoperative Sarcopenia. Ann. Surg. Oncol.; 2018; 25, pp. 1625-1632. [DOI: https://dx.doi.org/10.1245/s10434-018-6452-3] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29633095]
147. Ní Bhuachalla, É.B.; Daly, L.E.; Power, D.G.; Cushen, S.J.; MacEneaney, P.; Ryan, A.M. Computed tomography diagnosed cachexia and sarcopenia in 725 oncology patients: Is nutritional screening capturing hidden malnutrition?. J. Cachexia Sarcopenia Muscle; 2018; 9, pp. 295-305. [DOI: https://dx.doi.org/10.1002/jcsm.12258] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29271097]
148. Kim, Y.R.; Park, S.; Han, S.; Ahn, J.H.; Kim, S.; Sinn, D.H.; Jeong, W.K.; Ko, J.S.; Gwak, M.S.; Kim, G.S. Sarcopenia as a predictor of post-transplant tumor recurrence after living donor liver transplantation for hepatocellular carcinoma beyond the Milan criteria. Sci. Rep.; 2018; 8, 7157. [DOI: https://dx.doi.org/10.1038/s41598-018-25628-w]
149. Lee, J.S.; Kim, Y.S.; Kim, E.Y.; Jin, W. Prognostic significance of CT-determined sarcopenia in patients with advanced gastric cancer. PLoS ONE; 2018; 13, e0202700. [DOI: https://dx.doi.org/10.1371/journal.pone.0202700]
150. Mayr, R.; Fritsche, H.-M.; Zeman, F.; Reiffen, M.; Siebertz, L.; Niessen, C.; Pycha, A.; van Rhijn, B.W.G.; Burger, M.; Gierth, M. Sarcopenia predicts 90-day mortality and postoperative complications after radical cystectomy for bladder cancer. World J. Urol.; 2018; 36, pp. 1201-1207. [DOI: https://dx.doi.org/10.1007/s00345-018-2259-x] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29520591]
151. Mao, C.; Chen, X.; Lin, J.; Zhu-ge, W.; Xie, Z.; Chen, X.; Zhang, F.; Wu, R.; Zhang, W.; Lou, N. et al. A Novel Nomogram for Predicting Postsurgical Intra-abdominal Infection in Gastric Cancer Patients: A Prospective Study. J. Gastrointest. Surg.; 2018; 22, pp. 421-429. [DOI: https://dx.doi.org/10.1007/s11605-017-3580-1] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29330724]
152. Motoori, M.; Fujitani, K.; Sugimura, K.; Miyata, H.; Nakatsuka, R.; Nishizawa, Y.; Komatsu, H.; Miyazaki, S.; Komori, T.; Kashiwazaki, M. et al. Skeletal Muscle Loss during Neoadjuvant Chemotherapy Is an Independent Risk Factor for Postoperative Infectious Complications in Patients with Advanced Esophageal Cancer. Oncology; 2018; 95, pp. 281-287. [DOI: https://dx.doi.org/10.1159/000490616]
153. McSorley, S.T.; Black, D.H.; Horgan, P.G.; McMillan, D.C. The relationship between tumour stage, systemic inflammation, body composition and survival in patients with colorectal cancer. Clin. Nutr.; 2018; 37, pp. 1279-1285. [DOI: https://dx.doi.org/10.1016/j.clnu.2017.05.017] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28566220]
154. van der Kroft, G.; Bours, D.M.J.L.; Janssen-Heijnen, D.M.; van Berlo, D.C.L.H.; Konsten, D.J.L.M. Value of sarcopenia assessed by computed tomography for the prediction of postoperative morbidity following oncological colorectal resection: A comparison with the malnutrition screening tool. Clin. Nutr. ESPEN; 2018; 24, pp. 114-119. [DOI: https://dx.doi.org/10.1016/j.clnesp.2018.01.003] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29576348]
155. van Vugt, J.L.A.; Coebergh van den Braak, R.R.J.; Lalmahomed, Z.S.; Vrijland, W.W.; Dekker, J.W.T.; Zimmerman, D.D.E.; Vles, W.J.; Coene, P.-P.L.O.; IJzermans, J.N.M. Impact of low skeletal muscle mass and density on short and long-term outcome after resection of stage I–III colorectal cancer. Eur. J. Surg. Oncol.; 2018; 44, pp. 1354-1360. [DOI: https://dx.doi.org/10.1016/j.ejso.2018.05.029] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29914788]
156. Williams, G.R.; Deal, A.M.; Shachar, S.S.; Walko, C.M.; Patel, J.N.; O’Neil, B.; McLeod, H.L.; Weinberg, M.S.; Choi, S.K.; Muss, H.B. et al. The Impact of Skeletal Muscle on the Pharmacokinetics and Toxicity of 5-Fluorouracil in Colorectal Cancer. Cancer Chemother. Pharmacol.; 2018; 81, pp. 413-417. [DOI: https://dx.doi.org/10.1007/s00280-017-3487-2] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29159476]
157. Zhang, W.; Lin, J.; Chen, W.; Huang, Y.; Wu, R.; Chen, X.; Lou, N.; Chi, C.; Hu, C.; Shen, X. Sarcopenic Obesity Is Associated with Severe Postoperative Complications in Gastric Cancer Patients Undergoing Gastrectomy: A Prospective Study. J. Gastrointest. Surg.; 2018; 22, pp. 1861-1869. [DOI: https://dx.doi.org/10.1007/s11605-018-3835-5] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29943139]
158. Zhang, Y.; Wang, J.P.; Wang, X.L.; Tian, H.; Gao, T.T.; Tang, L.M.; Tian, F.; Wang, J.W.; Zheng, H.J.; Zhang, L. et al. Computed tomography–quantified body composition predicts short-term outcomes after gastrectomy in gastric cancer. Curr. Oncol.; 2018; 25, pp. e411-e422. [DOI: https://dx.doi.org/10.3747/co.25.4014]
159. Okugawa, Y.; Yao, L.; Toiyama, Y.; Yamamoto, A.; Shigemori, T.; Yin, C.; Omura, Y.; Ide, S.; Kitajima, T.; Shimura, T. et al. Prognostic impact of sarcopenia and its correlation with circulating miR-21 in colorectal cancer patients. Oncol. Rep.; 2018; 39, pp. 1555-1564. [DOI: https://dx.doi.org/10.3892/or.2018.6270] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29484416]
160. Rier, H.N.; Jager, A.; Meinardi, M.C.; van Rosmalen, J.; Kock, M.C.J.M.; Westerweel, P.E.; Trajkovic, M.; Sleijfer, S.; Levin, M.-D. Severe sarcopenia might be associated with a decline of physical independence in older patients undergoing chemotherapeutic treatment. Support. Care Cancer; 2018; 26, pp. 1781-1789. [DOI: https://dx.doi.org/10.1007/s00520-017-4018-8] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29247308]
161. Sato, S.; Kunisaki, C.; Suematsu, H.; Tanaka, Y.; Hiroshi, M.; Kosaka, T.; Yukawa, N.; Tanaka, K.; Sato, K.; Akiyama, H. et al. Impact of Sarcopenia in Patients with Unresectable Locally Advanced Esophageal Cancer Receiving Chemoradiotherapy. In Vivo; 2018; 32, pp. 603-610. [DOI: https://dx.doi.org/10.21873/invivo.112282]
162. Stretch, C.; Aubin, J.-M.; Mickiewicz, B.; Leugner, D.; Al-manasra, T.; Tobola, E.; Salazar, S.; Sutherland, F.R.; Ball, C.G.; Dixon, E. et al. Sarcopenia and myosteatosis are accompanied by distinct biological profiles in patients with pancreatic and periampullary adenocarcinomas. PLoS ONE; 2018; 13, e0196235. [DOI: https://dx.doi.org/10.1371/journal.pone.0196235] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29723245]
163. Sugimoto, M.; Farnell, M.B.; Nagorney, D.M.; Kendrick, M.L.; Truty, M.J.; Smoot, R.L.; Chari, S.T.; Moynagh, M.R.; Petersen, G.M.; Carter, R.E. et al. Decreased Skeletal Muscle Volume Is a Predictive Factor for Poorer Survival in Patients Undergoing Surgical Resection for Pancreatic Ductal Adenocarcinoma. J. Gastrointest. Surg.; 2018; 22, pp. 831-839. [DOI: https://dx.doi.org/10.1007/s11605-018-3695-z]
164. Sui, K.; Okabayshi, T.; Iwata, J.; Morita, S.; Sumiyoshi, T.; Iiyama, T.; Shimada, Y. Correlation between the skeletal muscle index and surgical outcomes of pancreaticoduodenectomy. Surg. Today; 2018; 48, pp. 545-551. [DOI: https://dx.doi.org/10.1007/s00595-017-1622-7]
165. Limpawattana, P.; Theerakulpisut, D.; Wirasorn, K.; Sookprasert, A.; Khuntikeo, N.; Chindaprasirt, J. The impact of skeletal muscle mass on survival outcome in biliary tract cancer patients. PLoS ONE; 2018; 13, e0204985. [DOI: https://dx.doi.org/10.1371/journal.pone.0204985]
166. Caan, B.J.; Cespedes Feliciano, E.M.; Prado, C.M.; Alexeeff, S.; Kroenke, C.H.; Bradshaw, P.; Quesenberry, C.P.; Weltzien, E.K.; Castillo, A.L.; Olobatuyi, T.A. et al. Association of Muscle and Adiposity Measured by Computed Tomography with Survival in Patients with Nonmetastatic Breast Cancer. JAMA Oncol.; 2018; 4, pp. 798-804. [DOI: https://dx.doi.org/10.1001/jamaoncol.2018.0137] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29621380]
167. Ha, Y.; Kim, D.; Han, S.; Chon, Y.E.; Lee, Y.B.; Kim, M.N.; Lee, J.H.; Park, H.; Rim, K.S.; Hwang, S.G. Sarcopenia Predicts Prognosis in Patients with Newly Diagnosed Hepatocellular Carcinoma, Independent of Tumor Stage and Liver Function. Cancer Res. Treat.; 2018; 50, pp. 843-851. [DOI: https://dx.doi.org/10.4143/crt.2017.232] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28882021]
168. Nakashima, Y.; Saeki, H.; Nakanishi, R.; Sugiyama, M.; Kurashige, J.; Oki, E.; Maehara, Y. Assessment of Sarcopenia as a Predictor of Poor Outcomes after Esophagectomy in Elderly Patients with Esophageal Cancer. Ann. Surg.; 2018; 267, pp. 1100-1104. [DOI: https://dx.doi.org/10.1097/SLA.0000000000002252] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28437312]
169. Makiura, D.; Ono, R.; Inoue, J.; Fukuta, A.; Kashiwa, M.; Miura, Y.; Oshikiri, T.; Nakamura, T.; Kakeji, Y.; Sakai, Y. Impact of Sarcopenia on Unplanned Readmission and Survival after Esophagectomy in Patients with Esophageal Cancer. Ann. Surg. Oncol.; 2018; 25, pp. 456-464. [DOI: https://dx.doi.org/10.1245/s10434-017-6294-4] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29214454]
170. Mason, R.J.; Boorjian, S.A.; Bhindi, B.; Rangel, L.; Frank, I.; Karnes, R.J.; Tollefson, M.K. The Association between Sarcopenia and Oncologic Outcomes after Radical Prostatectomy. Clin. Genitourin. Cancer; 2018; 16, pp. e629-e636. [DOI: https://dx.doi.org/10.1016/j.clgc.2017.11.003] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29289518]
171. Begini, P.; Gigante, E.; Antonelli, G.; Carbonetti, F.; Iannicelli, E.; Anania, G.; Imperatrice, B.; Pellicelli, A.M.; Fave, G.D.; Marignani, M. Sarcopenia predicts reduced survival in patients with hepatocellular carcinoma at first diagnosis. Ann. Hepatol.; 2017; 16, pp. 107-114. [DOI: https://dx.doi.org/10.5604/16652681.1226821]
172. Black, D.; Mackay, C.; Ramsay, G.; Hamoodi, Z.; Nanthakumaran, S.; Park, K.G.M.; Loudon, M.A.; Richards, C.H. Prognostic Value of Computed Tomography: Measured Parameters of Body Composition in Primary Operable Gastrointestinal Cancers. Ann. Surg. Oncol.; 2017; 24, pp. 2241-2251. [DOI: https://dx.doi.org/10.1245/s10434-017-5829-z] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28324283]
173. Daly, L.E.; Power, D.G.; O’Reilly, Á.; Donnellan, P.; Cushen, S.J.; O’Sullivan, K.; Twomey, M.; Woodlock, D.P.; Redmond, H.P.; Ryan, A.M. The impact of body composition parameters on ipilimumab toxicity and survival in patients with metastatic melanoma. Br. J. Cancer; 2017; 116, pp. 310-317. [DOI: https://dx.doi.org/10.1038/bjc.2016.431] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28072766]
174. Endo, T.; Momoki, C.; Yamaoka, M.; Hachino, S.; Iwatani, S.; Kiyota, S.; Tanaka, H.; Habu, D. Validation of Skeletal Muscle Volume as a Nutritional Assessment in Patients with Gastric or Colorectal Cancer before Radical Surgery. J. Clin. Med. Res.; 2017; 9, pp. 844-859. [DOI: https://dx.doi.org/10.14740/jocmr3129w] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28912921]
175. Härter, J.; Orlandi, S.P.; Gonzalez, M.C. Nutritional and functional factors as prognostic of surgical cancer patients. Support. Care Cancer; 2017; 25, pp. 2525-2530. [DOI: https://dx.doi.org/10.1007/s00520-017-3661-4] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28303380]
176. Heidelberger, V.; Goldwasser, F.; Kramkimel, N.; Jouinot, A.; Huillard, O.; Boudou-Rouquette, P.; Chanal, J.; Arrondeau, J.; Franck, N.; Alexandre, J. et al. Sarcopenic overweight is associated with early acute limiting toxicity of anti-PD1 checkpoint inhibitors in melanoma patients. Investig. New Drugs; 2017; 35, pp. 436-441. [DOI: https://dx.doi.org/10.1007/s10637-017-0464-x] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28396974]
177. Huang, D.-D.; Zhou, C.-J.; Wang, S.-L.; Mao, S.-T.; Zhou, X.-Y.; Lou, N.; Zhang, Z.; Yu, Z.; Shen, X.; Zhuang, C.-L. Impact of different sarcopenia stages on the postoperative outcomes after radical gastrectomy for gastric cancer. Surgery; 2017; 161, pp. 680-693. [DOI: https://dx.doi.org/10.1016/j.surg.2016.08.030]
178. Imai, K.; Takai, K.; Watanabe, S.; Hanai, T.; Suetsugu, A.; Shiraki, M.; Shimizu, M. Sarcopenia Impairs Prognosis of Patients with Hepatocellular Carcinoma: The Role of Liver Functional Reserve and Tumor-Related Factors in Loss of Skeletal Muscle Volume. Nutrients; 2017; 9, 1054. [DOI: https://dx.doi.org/10.3390/nu9101054] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28937616]
179. Lou, N.; Chi, C.-H.; Chen, X.-D.; Zhou, C.-J.; Wang, S.-L.; Zhuang, C.-L.; Shen, X. Sarcopenia in overweight and obese patients is a predictive factor for postoperative complication in gastric cancer: A prospective study. Eur. J. Surg. Oncol.; 2017; 43, pp. 188-195. [DOI: https://dx.doi.org/10.1016/j.ejso.2016.09.006] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27692536]
180. Cushen, S.J.; Power, D.G.; Teo, M.Y.; MacEneaney, P.; Maher, M.M.; McDermott, R.; O’Sullivan, K.; Ryan, A.M. Body Composition by Computed Tomography as a Predictor of Toxicity in Patients with Renal Cell Carcinoma Treated with Sunitinib. Am. J. Clin. Oncol.; 2017; 40, pp. 47-52. [DOI: https://dx.doi.org/10.1097/COC.0000000000000061]
181. Cespedes Feliciano, E.M.; Kroenke, C.H.; Meyerhardt, J.A.; Prado, C.M.; Bradshaw, P.T.; Kwan, M.L.; Xiao, J.; Alexeeff, S.; Corley, D.; Weltzien, E. et al. Association of Systemic Inflammation and Sarcopenia with Survival in Nonmetastatic Colorectal Cancer. JAMA Oncol.; 2017; 3, e172319. [DOI: https://dx.doi.org/10.1001/jamaoncol.2017.2319]
182. Elliott, J.; Doyle, S.; Murphy, C.; King, S.; Guinan, E.; Beddy, P.; Ravi, N.; Reynolds, J. Sarcopenia: Prevalence, and Impact on Operative and Oncologic Outcomes in the Multimodal Management of Locally Advanced Esophageal Cancer. Ann. Surg.; 2017; 266, pp. 822-830. [DOI: https://dx.doi.org/10.1097/SLA.0000000000002398] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28796017]
183. Wendrich, A.W.; Swartz, J.E.; Bril, S.I.; Wegner, I.; de Graeff, A.; Smid, E.J.; de Bree, R.; Pothen, A.J. Low skeletal muscle mass is a predictive factor for chemotherapy dose-limiting toxicity in patients with locally advanced head and neck cancer. Oral Oncol.; 2017; 71, pp. 26-33. [DOI: https://dx.doi.org/10.1016/j.oraloncology.2017.05.012]
184. Bronger, H.; Hederich, P.; Hapfelmeier, A.; Metz, S.; Noël, P.B.; Kiechle, M.; Schmalfeldt, B. Sarcopenia in Advanced Serous Ovarian Cancer. Int. J. Gynecol. Cancer; 2017; 27, pp. 223-232. [DOI: https://dx.doi.org/10.1097/IGC.0000000000000867] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27870708]
185. Ishihara, H.; Kondo, T.; Omae, K.; Takagi, T.; Iizuka, J.; Kobayashi, H.; Hashimoto, Y.; Tanabe, K. Sarcopenia predicts survival outcomes among patients with urothelial carcinoma of the upper urinary tract undergoing radical nephroureterectomy: A retrospective multi-institution study. Int. J. Clin. Oncol.; 2017; 22, pp. 136-144. [DOI: https://dx.doi.org/10.1007/s10147-016-1021-x]
186. Miyata, H.; Sugimura, K.; Motoori, M.; Fujiwara, Y.; Omori, T.; Yanagimoto, Y.; Ohue, M.; Yasui, M.; Miyoshi, N.; Tomokuni, A. et al. Clinical Assessment of Sarcopenia and Changes in Body Composition During Neoadjuvant Chemotherapy for Esophageal Cancer. Anticancer Res.; 2017; 37, pp. 3053-3059. [DOI: https://dx.doi.org/10.21873/anticanres.11660] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28551644]
187. Zhou, C.-J.; Zhang, F.-M.; Zhang, F.-Y.; Yu, Z.; Chen, X.-L.; Shen, X.; Zhuang, C.-L.; Chen, X.-X. Sarcopenia: A new predictor of postoperative complications for elderly gastric cancer patients who underwent radical gastrectomy. J. Surg. Res.; 2017; 211, pp. 137-146. [DOI: https://dx.doi.org/10.1016/j.jss.2016.12.014] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28501109]
188. Chemama, S.; Bayar, M.A.; Lanoy, E.; Ammari, S.; Stoclin, A.; Goéré, D.; Elias, D.; Raynard, B.; Antoun, S. Sarcopenia is Associated with Chemotherapy Toxicity in Patients Undergoing Cytoreductive Surgery with Hyperthermic Intraperitoneal Chemotherapy for Peritoneal Carcinomatosis from Colorectal Cancer. Ann. Surg. Oncol.; 2016; 23, pp. 3891-3898. [DOI: https://dx.doi.org/10.1245/s10434-016-5360-7]
189. Grotenhuis, B.A.; Shapiro, J.; van Adrichem, S.; de Vries, M.; Koek, M.; Wijnhoven, B.P.L.; van Lanschot, J.J.B. Sarcopenia/Muscle Mass is not a Prognostic Factor for Short- and Long-Term Outcome after Esophagectomy for Cancer. World J. Surg.; 2016; 40, pp. 2698-2704. [DOI: https://dx.doi.org/10.1007/s00268-016-3603-1]
190. Nishigori, T.; Okabe, H.; Tanaka, E.; Tsunoda, S.; Hisamori, S.; Sakai, Y. Sarcopenia as a predictor of pulmonary complications after esophagectomy for thoracic esophageal cancer. J. Surg. Oncol.; 2016; 113, pp. 678-684. [DOI: https://dx.doi.org/10.1002/jso.24214] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26936808]
191. Okumura, S.; Kaido, T.; Hamaguchi, Y.; Fujimoto, Y.; Kobayashi, A.; Iida, T.; Yagi, S.; Taura, K.; Hatano, E.; Uemoto, S. Impact of the preoperative quantity and quality of skeletal muscle on outcomes after resection of extrahepatic biliary malignancies. Surgery; 2016; 159, pp. 821-833. [DOI: https://dx.doi.org/10.1016/j.surg.2015.08.047]
192. Pecorelli, N.; Carrara, G.; De Cobelli, F.; Cristel, G.; Damascelli, A.; Balzano, G.; Beretta, L.; Braga, M. Effect of sarcopenia and visceral obesity on mortality and pancreatic fistula following pancreatic cancer surgery. Br. J. Surg.; 2016; 103, pp. 434-442. [DOI: https://dx.doi.org/10.1002/bjs.10063]
193. Park, I.; Choi, S.J.; Kim, Y.S.; Ahn, H.K.; Hong, J.; Sym, S.J.; Park, J.; Cho, E.K.; Lee, J.H.; Shin, Y.J. et al. Prognostic Factors for Risk Stratification of Patients with Recurrent or Metastatic Pancreatic Adenocarcinoma Who Were Treated with Gemcitabine-Based Chemotherapy. Cancer Res. Treat.; 2016; 48, pp. 1264-1273. [DOI: https://dx.doi.org/10.4143/crt.2015.250]
194. Suzuki, Y.; Okamoto, T.; Fujishita, T.; Katsura, M.; Akamine, T.; Takamori, S.; Morodomi, Y.; Tagawa, T.; Shoji, F.; Maehara, Y. Clinical implications of sarcopenia in patients undergoing complete resection for early non-small cell lung cancer. Lung Cancer; 2016; 101, pp. 92-97. [DOI: https://dx.doi.org/10.1016/j.lungcan.2016.08.007]
195. Takeoka, Y.; Sakatoku, K.; Miura, A.; Yamamura, R.; Araki, T.; Seura, H.; Okamura, T.; Koh, H.; Nakamae, H.; Hino, M. et al. Prognostic Effect of Low Subcutaneous Adipose Tissue on Survival Outcome in Patients with Multiple Myeloma. Clin. Lymphoma Myeloma Leuk.; 2016; 16, pp. 434-441. [DOI: https://dx.doi.org/10.1016/j.clml.2016.04.010]
196. Fukushima, H.; Nakanishi, Y.; Kataoka, M.; Tobisu, K.; Koga, F. Prognostic significance of sarcopenia in upper tract urothelial carcinoma patients treated with radical nephroureterectomy. Cancer Med.; 2016; 5, pp. 2213-2220. [DOI: https://dx.doi.org/10.1002/cam4.795]
197. Go, S.; Park, M.J.; Song, H.; Kim, H.; Kang, M.H.; Lee, H.R.; Kim, Y.; Kim, R.B.; Lee, S.I.; Lee, G. Prognostic impact of sarcopenia in patients with diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J. Cachexia Sarcopenia Muscle; 2016; 7, pp. 567-576. [DOI: https://dx.doi.org/10.1002/jcsm.12115] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27104110]
198. Kumar, A.; Moynagh, M.R.; Multinu, F.; Cliby, W.A.; McGree, M.E.; Weaver, A.L.; Young, P.M.; Bakkum-Gamez, J.N.; Langstraat, C.L.; Dowdy, S.C. et al. Muscle composition measured by CT scan is a measurable predictor of overall survival in advanced ovarian cancer. Gynecol. Oncol.; 2016; 142, pp. 311-316. [DOI: https://dx.doi.org/10.1016/j.ygyno.2016.05.027] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27235857]
199. Pędziwiatr, M.; Pisarska, M.; Major, P.; Grochowska, A.; Matłok, M.; Przęczek, K.; Stefura, T.; Budzyński, A.; Kłęk, S. Laparoscopic colorectal cancer surgery combined with enhanced recovery after surgery protocol (ERAS) reduces the negative impact of sarcopenia on short-term outcomes. Eur. J. Surg. Oncol.; 2016; 42, pp. 779-787. [DOI: https://dx.doi.org/10.1016/j.ejso.2016.03.037] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27156809]
200. Rollins, K.E.; Tewari, N.; Ackner, A.; Awwad, A.; Madhusudan, S.; Macdonald, I.A.; Fearon, K.C.H.; Lobo, D.N. The impact of sarcopenia and myosteatosis on outcomes of unresectable pancreatic cancer or distal cholangiocarcinoma. Clin. Nutr.; 2016; 35, pp. 1103-1109. [DOI: https://dx.doi.org/10.1016/j.clnu.2015.08.005]
201. Yabusaki, N.; Fujii, T.; Yamada, S.; Suzuki, K.; Sugimoto, H.; Kanda, M.; Nakayama, G.; Koike, M.; Fujiwara, M.; Kodera, Y. Adverse impact of low skeletal muscle index on the prognosis of hepatocellular carcinoma after hepatic resection. Int. J. Surg.; 2016; 30, pp. 136-142. [DOI: https://dx.doi.org/10.1016/j.ijsu.2016.04.049]
202. Buettner, S.; Wagner, D.; Kim, Y.; Margonis, G.A.; Makary, M.A.; Wilson, A.; Sasaki, K.; Amini, N.; Gani, F.; Pawlik, T.M. Inclusion of Sarcopenia Outperforms the Modified Frailty Index in Predicting 1-Year Mortality among 1,326 Patients Undergoing Gastrointestinal Surgery for a Malignant Indication. J. Am. Coll. Surg.; 2016; 222, pp. 397-407. [DOI: https://dx.doi.org/10.1016/j.jamcollsurg.2015.12.020] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26803743]
203. Amini, N.; Spolverato, G.; Gupta, R.; Margonis, G.A.; Kim, Y.; Wagner, D.; Rezaee, N.; Weiss, M.J.; Wolfgang, C.L.; Makary, M.M. et al. Impact Total Psoas Volume on Short- and Long-Term Outcomes in Patients Undergoing Curative Resection for Pancreatic Adenocarcinoma: A New Tool to Assess Sarcopenia. J. Gastrointest. Surg.; 2015; 19, pp. 1593-1602. [DOI: https://dx.doi.org/10.1007/s11605-015-2835-y] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25925237]
204. Anandavadivelan, P.; Brismar, T.B.; Nilsson, M.; Johar, A.M.; Martin, L. Sarcopenic obesity: A probable risk factor for dose limiting toxicity during neo-adjuvant chemotherapy in oesophageal cancer patients. Clin. Nutr.; 2015; 35, pp. 724-730. [DOI: https://dx.doi.org/10.1016/j.clnu.2015.05.011]
205. Fukuda, Y.; Yamamoto, K.; Hirao, M.; Nishikawa, K.; Nagatsuma, Y.; Nakayama, T.; Tanikawa, S.; Maeda, S.; Uemura, M.; Miyake, M. et al. Sarcopenia is associated with severe postoperative complications in elderly gastric cancer patients undergoing gastrectomy. Gastric Cancer; 2015; 19, pp. 986-993. [DOI: https://dx.doi.org/10.1007/s10120-015-0546-4]
206. Huang, D.-D.; Wang, S.-L.; Zhuang, C.-L.; Zheng, B.-S.; Lu, J.-X.; Chen, F.-F.; Zhou, C.-J.; Shen, X.; Yu, Z. Sarcopenia, as defined by low muscle mass, strength and physical performance, predicts complications after surgery for colorectal cancer. Colorectal Dis.; 2015; 17, pp. O256-O264. [DOI: https://dx.doi.org/10.1111/codi.13067]
207. Ida, S.; Watanabe, M.; Yoshida, N.; Baba, Y.; Umezaki, N.; Harada, K.; Karashima, R.; Imamura, Y.; Iwagami, S.; Baba, H. Sarcopenia is a Predictor of Postoperative Respiratory Complications in Patients with Esophageal Cancer. Ann. Surg. Oncol.; 2015; 22, pp. 4432-4437. [DOI: https://dx.doi.org/10.1245/s10434-015-4559-3] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25862583]
208. Kim, E.Y.; Kim, Y.S.; Park, I.; Ahn, H.K.; Cho, E.K.; Jeong, Y.M. Prognostic Significance of CT-Determined Sarcopenia in Patients with Small-Cell Lung Cancer. J. Thorac. Oncol.; 2015; 10, pp. 1795-1799. [DOI: https://dx.doi.org/10.1097/JTO.0000000000000690] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26484630]
209. Levolger, S.; van Vledder, M.G.; Muslem, R.; Koek, M.; Niessen, W.J.; de Man, R.A.; de Bruin, R.W.F.; Ijzermans, J.N.M. Sarcopenia impairs survival in patients with potentially curable hepatocellular carcinoma. J. Surg. Oncol.; 2015; 112, pp. 208-213. [DOI: https://dx.doi.org/10.1002/jso.23976] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26266324]
210. Reisinger, K.W.; van Vugt, J.L.A.; Tegels, J.J.W.; Snijders, C.; Hulsewé, K.W.E.; Hoofwijk, A.G.M.; Stoot, J.H.; Von Meyenfeldt, M.F.; Beets, G.L.; Derikx, J.P.M. et al. Functional compromise reflected by sarcopenia, frailty, and nutritional depletion predicts adverse postoperative outcome after colorectal cancer surgery. Ann. Surg.; 2015; 261, pp. 345-352. [DOI: https://dx.doi.org/10.1097/SLA.0000000000000628]
211. Tamandl, D.; Paireder, M.; Asari, R.; Baltzer, P.A.; Schoppmann, S.F.; Ba-Ssalamah, A. Markers of sarcopenia quantified by computed tomography predict adverse long-term outcome in patients with resected oesophageal or gastro-oesophageal junction cancer. Eur. Radiol.; 2016; 26, pp. 1359-1361. [DOI: https://dx.doi.org/10.1007/s00330-015-3963-1]
212. Tegels, J.J.W.; van Vugt, J.L.A.; Reisinger, K.W.; Hulsewé, K.W.E.; Hoofwijk, A.G.M.; Derikx, J.P.M.; Stoot, J.H.M.B. Sarcopenia is highly prevalent in patients undergoing surgery for gastric cancer but not associated with worse outcomes. J. Surg. Oncol.; 2015; 112, pp. 403-407. [DOI: https://dx.doi.org/10.1002/jso.24015]
213. Voron, T.; Tselikas, L.; Pietrasz, D.; Pigneur, F.; Laurent, A.; Compagnon, P.; Salloum, C.; Luciani, A.; Azoulay, D. Sarcopenia Impacts on Short- and Long-term Results of Hepatectomy for Hepatocellular Carcinoma. Ann. Surg.; 2015; 261, pp. 1173-1183. [DOI: https://dx.doi.org/10.1097/SLA.0000000000000743] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24950264]
214. Lodewick, T.M.; van Nijnatten, T.J.A.; van Dam, R.M.; van Mierlo, K.; Dello, S.A.W.G.; Neumann, U.P.; Olde Damink, S.W.M.; Dejong, C.H.C. Are sarcopenia, obesity and sarcopenic obesity predictive of outcome in patients with colorectal liver metastases?. HPB; 2015; 17, pp. 438-446. [DOI: https://dx.doi.org/10.1111/hpb.12373] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25512239]
215. Tan, B.H.L.; Brammer, K.; Randhawa, N.; Welch, N.T.; Parsons, S.L.; James, E.J.; Catton, J.A. Sarcopenia is associated with toxicity in patients undergoing neo-adjuvant chemotherapy for oesophago-gastric cancer. Eur. J. Surg. Oncol.; 2015; 41, pp. 333-338. [DOI: https://dx.doi.org/10.1016/j.ejso.2014.11.040]
216. Wang, S.-L.; Zhuang, C.-L.; Huang, D.-D.; Pang, W.-Y.; Lou, N.; Chen, F.-F.; Zhou, C.-J.; Shen, X.; Yu, Z. Sarcopenia Adversely Impacts Postoperative Clinical Outcomes Following Gastrectomy in Patients with Gastric Cancer: A Prospective Study. Ann. Surg. Oncol.; 2015; 23, pp. 556-564. [DOI: https://dx.doi.org/10.1245/s10434-015-4887-3]
217. van Vugt, J.L.A.; Braam, H.J.; van Oudheusden, T.R.; Vestering, A.; Bollen, T.L.; Wiezer, M.J.; de Hingh, I.H.J.T.; van Ramshorst, B.; Boerma, D. Skeletal Muscle Depletion is Associated with Severe Postoperative Complications in Patients Undergoing Cytoreductive Surgery with Hyperthermic Intraperitoneal Chemotherapy for Peritoneal Carcinomatosis of Colorectal Cancer. Ann. Surg. Oncol.; 2015; 22, pp. 3625-3631. [DOI: https://dx.doi.org/10.1245/s10434-015-4429-z] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25672564]
218. Gonzalez, M.C.; Pastore, C.A.; Orlandi, S.P.; Heymsfield, S.B. Obesity paradox in cancer: New insights provided by body composition. Am. J. Clin. Nutr.; 2014; 99, pp. 999-1005. [DOI: https://dx.doi.org/10.3945/ajcn.113.071399] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24572565]
219. Barret, M.; Antoun, S.; Dalban, C.; Malka, D.; Mansourbakht, T.; Zaanan, A.; Latko, E.; Taieb, J. Sarcopenia is linked to treatment toxicity in patients with metastatic colorectal cancer. Nutr. Cancer; 2014; 66, pp. 583-589. [DOI: https://dx.doi.org/10.1080/01635581.2014.894103]
220. Harimoto, N.; Shirabe, K.; Yamashita, Y.-I.; Ikegami, T.; Yoshizumi, T.; Soejima, Y.; Ikeda, T.; Maehara, Y.; Nishie, A.; Yamanaka, T. Sarcopenia as a predictor of prognosis in patients following hepatectomy for hepatocellular carcinoma. Br. J. Surg.; 2013; 100, pp. 1523-1530. [DOI: https://dx.doi.org/10.1002/bjs.9258]
221. Huillard, O.; Mir, O.; Peyromaure, M.; Tlemsani, C.; Giroux, J.; Boudou-Rouquette, P.; Ropert, S.; Delongchamps, N.B.; Zerbib, M.; Goldwasser, F. Sarcopenia and body mass index predict sunitinib-induced early dose-limiting toxicities in renal cancer patients. Br. J. Cancer; 2013; 108, pp. 1034-1041. [DOI: https://dx.doi.org/10.1038/bjc.2013.58]
222. Veasey-Rodrigues, H.; Parsons, H.A.; Janku, F.; Naing, A.; Wheler, J.J.; Tsimberidou, A.M.; Kurzrock, R. A pilot study of temsirolimus and body composition. J. Cachexia Sarcopenia Muscle; 2013; 4, pp. 259-265. [DOI: https://dx.doi.org/10.1007/s13539-013-0113-y] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23893509]
223. Veasey Rodrigues, H.; Baracos, V.E.; Wheler, J.J.; Parsons, H.A.; Hong, D.S.; Naing, A.; Fu, S.; Falchoock, G.; Tsimberidou, A.M.; Piha-Paul, S. et al. Body composition and survival in the early clinical trials setting. Eur. J. Cancer; 2013; 49, pp. 3068-3075. [DOI: https://dx.doi.org/10.1016/j.ejca.2013.06.026] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23867127]
224. Meza-Junco, J.; Montano-Loza, A.J.; Baracos, V.E.; Prado, C.M.M.; Bain, V.G.; Beaumont, C.; Esfandiari, N.; Lieffers, J.R.; Sawyer, M.B. Sarcopenia as a Prognostic Index of Nutritional Status in Concurrent Cirrhosis and Hepatocellular Carcinoma. J. Clin. Gastroenterol.; 2013; 47, pp. 861-870. [DOI: https://dx.doi.org/10.1097/MCG.0b013e318293a825] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23751844]
225. Lieffers, J.R.; Bathe, O.F.; Fassbender, K.; Winget, M.; Baracos, V.E. Sarcopenia is associated with postoperative infection and delayed recovery from colorectal cancer resection surgery. Br. J. Cancer; 2012; 107, pp. 931-936. [DOI: https://dx.doi.org/10.1038/bjc.2012.350]
226. Mir, O.; Coriat, R.; Boudou-Rouquette, P.; Ropert, S.; Durand, J.-P.; Cessot, A.; Mallet, V.; Sogni, P.; Chaussade, S.; Pol, S. et al. Gemcitabine and oxaliplatin as second-line treatment in patients with hepatocellular carcinoma pre-treated with sorafenib. Med. Oncol.; 2012; 29, pp. 2793-2799. [DOI: https://dx.doi.org/10.1007/s12032-012-0208-x]
227. Parsons, H.A.; Baracos, V.E.; Dhillon, N.; Hong, D.S.; Kurzrock, R. Body composition, symptoms, and survival in advanced cancer patients referred to a phase I service. PLoS ONE; 2012; 7, e29330. [DOI: https://dx.doi.org/10.1371/journal.pone.0029330]
228. Parsons, H.A.; Tsimberidou, A.M.; Pontikos, M.; Fu, S.; Hong, D.; Wen, S.; Baracos, V.E.; Kurzrock, R. Evaluation of the clinical relevance of body composition parameters in patients with cancer metastatic to the liver treated with hepatic arterial infusion chemotherapy. Nutr. Cancer; 2012; 64, pp. 206-217. [DOI: https://dx.doi.org/10.1080/01635581.2012.638433] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22229660]
229. van Vledder, M.G.; Levolger, S.; Ayez, N.; Verhoef, C.; Tran, T.C.K.; Ijzermans, J.N.M. Body composition and outcome in patients undergoing resection of colorectal liver metastases. Br. J. Surg.; 2012; 99, pp. 550-557. [DOI: https://dx.doi.org/10.1002/bjs.7823]
230. Dalal, S.; Hui, D.; Bidaut, L.; Lem, K.; Del Fabbro, E.; Crane, C.; Reyes-Gibby, C.C.; Bedi, D.; Bruera, E. Relationships among body mass index, longitudinal body composition alterations, and survival in patients with locally advanced pancreatic cancer receiving chemoradiation: A pilot study. J. Pain Symptom Manag.; 2012; 44, pp. 181-191. [DOI: https://dx.doi.org/10.1016/j.jpainsymman.2011.09.010] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22695045]
231. Antoun, S.; Birdsell, L.; Sawyer, M.B.; Venner, P.; Escudier, B.; Baracos, V.E. Association of Skeletal Muscle Wasting with Treatment with Sorafenib in Patients with Advanced Renal Cell Carcinoma: Results From a Placebo-Controlled Study. J. Clin. Oncol.; 2010; 28, pp. 1054-1060. [DOI: https://dx.doi.org/10.1200/JCO.2009.24.9730] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20085939]
232. Tan, B.H.L.; Birdsell, L.A.; Martin, L.; Baracos, V.E.; Fearon, K.C.H. Sarcopenia in an Overweight or Obese Patient Is an Adverse Prognostic Factor in Pancreatic Cancer. Clin. Cancer Res.; 2009; 15, pp. 6973-6979. [DOI: https://dx.doi.org/10.1158/1078-0432.CCR-09-1525] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19887488]
233. Prado, C.M.M.; Baracos, V.E.; McCargar, L.J.; Reiman, T.; Mourtzakis, M.; Tonkin, K.; Mackey, J.R.; Koski, S.; Pituskin, E.; Sawyer, M.B. Sarcopenia as a Determinant of Chemotherapy Toxicity and Time to Tumor Progression in Metastatic Breast Cancer Patients Receiving Capecitabine Treatment. Clin. Cancer Res.; 2009; 15, pp. 2920-2926. [DOI: https://dx.doi.org/10.1158/1078-0432.CCR-08-2242] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19351764]
234. Prado, C.M.; Lieffers, J.R.; McCargar, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet Oncol.; 2008; 9, pp. 629-635. [DOI: https://dx.doi.org/10.1016/S1470-2045(08)70153-0]
235. Paireder, M.; Asari, R.; Kristo, I.; Rieder, E.; Tamandl, D.; Ba-Ssalamah, A.; Schoppmann, S. Impact of sarcopenia on outcome in patients with esophageal resection following neoadjuvant chemotherapy for esophageal cancer. Eur. J. Surg. Oncol. (EJSO); 2016; 43, pp. 478-484. [DOI: https://dx.doi.org/10.1016/j.ejso.2016.11.015] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28024944]
236. Nakano, J.; Fukushima, T.; Tanaka, T.; Fu, J.B.; Morishita, S. Physical function predicts mortality in patients with cancer: A systematic review and meta-analysis of observational studies. Support. Care Cancer; 2021; 29, pp. 5623-5634. [DOI: https://dx.doi.org/10.1007/s00520-021-06171-3] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33770257]
237. Williams, G.R.; Al-Obaidi, M.; Dai, C.; Bhatia, S.; Giri, S. SARC-F for screening of sarcopenia among older adults with cancer. Cancer; 2021; 127, pp. 1469-1475. [DOI: https://dx.doi.org/10.1002/cncr.33395] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33369894]
238. Liao, C.-D.; Tsauo, J.-Y.; Wu, Y.-T.; Cheng, C.-P.; Chen, H.-C.; Huang, Y.-C.; Chen, H.-C.; Liou, T.-H. Effects of protein supplementation combined with resistance exercise on body composition and physical function in older adults: A systematic review and meta-analysis. Am. J. Clin. Nutr.; 2017; 106, pp. 1078-1091. [DOI: https://dx.doi.org/10.3945/ajcn.116.143594] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28814401]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
This study will address the prevalence of pre-therapeutic sarcopenia (PS) and its clinical impact during cancer treatment among adult cancer patients ≥ 18 years of age. A meta-analysis (MA) with random-effect models was performed via a MEDLINE systematic review, according to the PRISMA statement, focusing on articles published before February 2022 that reported observational studies and clinical trials on the prevalence of PS and the following outcomes: overall survival (OS), progression-free survival (PFS), post-operative complications (POC), toxicities (TOX), and nosocomial infections (NI). A total of 65,936 patients (mean age: 45.7–85 y) with various cancer sites and extensions and various treatment modes were included. Mainly defined by CT scan-based loss of muscle mass only, the pooled prevalence of PS was 38.0%. The pooled relative risks were 1.97, 1.76, 2.70, 1.47, and 1.76 for OS, PFS, POC, TOX, and NI, respectively (moderate-to-high heterogeneity, I2: 58–85%). Consensus-based algorithm definitions of sarcopenia, integrating low muscle mass and low levels of muscular strength and/or physical performance, lowered the prevalence (22%) and heterogeneity (I2 < 50%). They also increased the predictive values with RRs ranging from 2.31 (OS) to 3.52 (POC). PS among cancer patients is prevalent and strongly associated with poor outcomes during cancer treatment, especially when considering a consensus-based algorithm approach.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details







1 Internal Medicine Geriatrics and Therapeutic Unit, APHM, 13009 Marseille, France; CNRS, EFS, ADES, Aix-Marseille University, 13015 Marseille, France
2 Department of Geriatrics, CHU Poitiers, 86000 Poitiers, France; CIC1402 INSERM Unit, Poitiers University Hospital, 86000 Poitiers, France
3 Ariane Program, Department of Medical Oncology, Cochin Hospital, Paris Cancer Institute CARPEM, APHP, 75014 Paris, France; INSERM U1016-CNRS UMR8104, Cochin Institute, Paris Cancer Institute CARPEM, Paris Cité University, 75015 Paris, France
4 Department of Geriatrics, Georges Pompidou European Hospital, Paris Cancer Institute CARPEM, APHP, 75015 Paris, France; Faculty of Health, Paris Cité University, 75006 Paris, France
5 Department of Medical Oncology, Gustave Roussy Institute, 94805 Villejuif, France
6 Internal Medicine Geriatrics and Therapeutic Unit, APHM, 13009 Marseille, France; Coordination Unit for Geriatric Oncology (UCOG), PACA West, 13009 Marseille, France
7 Department of Geriatrics, Georges Pompidou European Hospital, Paris Cancer Institute CARPEM, APHP, 75015 Paris, France
8 Department of Medical Oncology, Curie Institute, 92210 Saint-Cloud, France
9 Department of Cancer Medicine, Gustave Roussy Institute, 94805 Villejuif, France
10 Drug Development Department, Gustave Roussy Institute, 94805 Villejuif, France
11 Department of Geriatrics, Georges Pompidou European Hospital, Paris Cancer Institute CARPEM, APHP, 75015 Paris, France; INSERM, IMRB, Clinical, Epidemiology and Ageing, Université Paris-Est Creteil, 94010 Creteil, France
12 Department of Geriatrics, Avicenne Hospital, APHP, 93000 Bobigny, France; INSERM UMR_S942 Cardiovascular Markers in Stressed Conditions MASCOT, Sorbonne Paris Nord University, 93000 Bobigny, France