Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Currently, halide perovskites (HPs) are gaining traction in multiple applications, such as photovoltaics and resistive switching (RS) devices. In RS devices, the high electrical conductivity, tunable bandgap, good stability, and low-cost synthesis and processing make HPs promising as active layers. Additionally, the use of polymers in improving the RS properties of lead (Pb) and Pb-free HP devices was described in several recent reports. Thus, this review explored the in-depth role of polymers in optimizing HP RS devices. In this review, the effect of polymers on the ON/OFF ratio, retention, and endurance properties was successfully investigated. The polymers were discovered to be commonly utilized as passivation layers, charge transfer enhancement, and composite materials. Hence, further HP RS improvement integrated with polymers revealed promising approaches to delivering efficient memory devices. Based on the review, detailed insights into the significance of polymers in producing high-performance RS device technology were effectively understood.

Details

Title
The Role of Polymers in Halide Perovskite Resistive Switching Devices
Author
Gregory Soon How Thien 1   VIAFID ORCID Logo  ; Chan, Kah-Yoong 1   VIAFID ORCID Logo  ; Ab Rahman Marlinda 2   VIAFID ORCID Logo 

 Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, Cyberjaya 63100, Selangor, Malaysia 
 Nanotechnology and Catalysis Research Centre (NANOCAT), Universiti Malaya, Kuala Lumpur 50603, Malaysia 
First page
1067
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785210191
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.