Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Artificial intelligence (AI) is an emerging technology that is revolutionizing the discovery of new materials. One key application of AI is virtual screening of chemical libraries, which enables the accelerated discovery of materials with desired properties. In this study, we developed computational models to predict the dispersancy efficiency of oil and lubricant additives, a critical property in their design that can be estimated through a quantity named blotter spot. We propose a comprehensive approach that combines machine learning techniques with visual analytics strategies in an interactive tool that supports domain experts’ decision-making. We evaluated the proposed models quantitatively and illustrated their benefits through a case study. Specifically, we analyzed a series of virtual polyisobutylene succinimide (PIBSI) molecules derived from a known reference substrate. Our best-performing probabilistic model was Bayesian Additive Regression Trees (BART), which achieved a mean absolute error of 5.50±0.34 and a root mean square error of 7.56±0.47, as estimated through 5-fold cross-validation. To facilitate future research, we have made the dataset, including the potential dispersants used for modeling, publicly available. Our approach can help accelerate the discovery of new oil and lubricant additives, and our interactive tool can aid domain experts in making informed decisions based on blotter spot and other key properties.

Details

Title
Design of New Dispersants Using Machine Learning and Visual Analytics
Author
María Jimena Martínez 1   VIAFID ORCID Logo  ; Naveiro, Roi 2   VIAFID ORCID Logo  ; Soto, Axel J 3 ; Talavante, Pablo 4 ; Shin-Ho, Kim Lee 4   VIAFID ORCID Logo  ; Ramón Gómez Arrayas 5   VIAFID ORCID Logo  ; Franco, Mario 6 ; Mauleón, Pablo 6 ; Héctor Lozano Ordóñez 7 ; Guillermo Revilla López 7 ; Bernabei, Marco 7 ; Campillo, Nuria E 8   VIAFID ORCID Logo  ; Ponzoni, Ignacio 3   VIAFID ORCID Logo 

 ISISTAN (CONICET-UNCPBA) Campus Universitario—Paraje Arroyo Seco, Tandil 7000, Argentina 
 Institute of Mathematical Sciences (ICMAT-CSIC), Nicolás Cabrera, nº 13-15, Campus de Cantoblanco, UAM, 28049 Madrid, Spain; AItenea Biotech, Parque Científico de Madrid, Ciudad Universitaria de Cantoblanco, Calle Faraday, 7, 28049 Madrid, Spain; Campus Pirineos, CUNEF Universidad, Calle de los Pirineos, 55, 28040 Madrid, Spain 
 Institute for Computer Science and Engineering (UNS–CONICET), San Andrés 800, Campus Palihue, Bahía Blanca 8000, Argentina; Department of Computer Science and Engineering, Universidad Nacional del Sur, San Andrés 800, Campus Palihue, Bahía Blanca 8000, Argentina 
 AItenea Biotech, Parque Científico de Madrid, Ciudad Universitaria de Cantoblanco, Calle Faraday, 7, 28049 Madrid, Spain 
 AItenea Biotech, Parque Científico de Madrid, Ciudad Universitaria de Cantoblanco, Calle Faraday, 7, 28049 Madrid, Spain; Department of Organic Chemistry, Institute for Advanced Research in Chemical Sciences (IAdChem) UAM, 28049 Madrid, Spain 
 Department of Organic Chemistry, Institute for Advanced Research in Chemical Sciences (IAdChem) UAM, 28049 Madrid, Spain 
 Repsol Technology Lab DC Technology & Corporate Venturing, Agustín de Betancourt s/n, Móstoles, 28935 Madrid, Spain 
 Institute of Mathematical Sciences (ICMAT-CSIC), Nicolás Cabrera, nº 13-15, Campus de Cantoblanco, UAM, 28049 Madrid, Spain; AItenea Biotech, Parque Científico de Madrid, Ciudad Universitaria de Cantoblanco, Calle Faraday, 7, 28049 Madrid, Spain; CIB Margarita Salas (CSIC), Ramiro de Maeztu, 9, 28740 Madrid, Spain 
First page
1324
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785213055
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.