Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The effectiveness of nitric oxide (NO) for control of grey spot rot cause by Pestalotiopsis eriobotryfolia in harvested loquat fruit and its probable mechanisms have been investigated. The results showed that NO donor sodium nitroprusside (SNP) did not evidently inhibit mycelial growth and spore germination of P. eriobotryfolia, but resulted in a low disease incidence and small lesion diameter. SNP resulted in a higher hydrogen peroxide (H2O2) level in the early stage after inoculation and a lower H2O2 level in the latter period by regulating the activities of superoxide dismutase, ascorbate peroxidase and catalase. At the same time, SNP enhanced the activities of chitinase, β-1,3-glucanase, phenylalanine ammonialyase, polyphenoloxidase, and total phenolic content in loquat fruit. However, SNP treatment inhibited the activities of cell wall-modifying enzymes and the modification of cell wall components. Our results suggested that NO treatment might have potential in reducing grey spot rot of postharvest loquat fruit.

Details

Title
Exogenous Nitric Oxide-Induced Postharvest Gray Spot Disease Resistance in Loquat Fruit and Its Possible Mechanism of Action
Author
Ren, Yanfang 1 ; Tengyu Yan 2 ; Hu, Chunmei 2 ; Liu, Dong 3 ; He, Junyu 1 

 School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; College of Agriculture, Guizhou University, Guiyang 550025, China 
 School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China 
 College of Agriculture, Guizhou University, Guiyang 550025, China 
First page
4369
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785218733
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.