Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents the results of research on laser lap welding technology of heterogeneous materials and a laser post-heat treatment method to enhance welding performance. The purpose of this study is to reveal the welding principle of austenitic/martensitic dissimilar stainless-steel materials (3030Cu/440C-Nb) and to further obtain welded joints with good mechanical and sealing properties. A natural-gas injector valve is taken as the study case where its valve pipe (303Cu) and valve seat (440C-Nb) are welded. Experiments and numerical simulations were conducted where the welded joints’ temperature and stress fields, microstructure, element distribution, and microhardness were studied. The results showed that the residual equivalent stresses and uneven fusion zone tend to concentrate at the joint of two materials within the welded joint. The hardness of the 303Cu side (181.8 HV) is less than the 440C-Nb side (266 HV) in the center of the welded joint. The laser post-heat treatment can reduce the residual equivalent stress in the welded joint and improve the mechanical and sealing properties. The results of the press-off force test and the helium leakage test showed that the press-off force increased from 9640 N to 10,046 N and the helium leakage rate decreased from 3.34 × 10−4 to 3.96 × 10−6.

Details

Title
Experimental Research and Numerical Simulation of Laser Welding of 303Cu/440C-Nb Stainless-Steel Thin-Walled Natural-Gas Injector for Vehicles
Author
Zhou, Lisen 1 ; Li, Dongya 2 ; Xu, Chonghai 1   VIAFID ORCID Logo  ; Zheng, Zhaoxing 3 ; Liu, Yu 2   VIAFID ORCID Logo 

 Faculty of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China 
 School of Mechanical Engineering, Jiangnang University, Wuxi 214122, China 
 Wuxi Longsheng Technology Co., Ltd., Wuxi 214028, China 
First page
2109
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785219205
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.