Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The perennial herbaceous forage crops’ (PHFC) biomass as bioindustry feedstock or source of nutrients for ruminants is very important from their final utilization point of view. In 2022, the AquaCrop-FAO version 7.0 model has been opened for PHFC. In this context, this study aimed to test for the first time the ability of the AquaCrop-FAO model to simulate canopy cover (CC), total available soil water (TAW), and biomass (B) of Guinea grass (Megathyrsus maximus cv. Agrosavia sabanera) under different water regimes at the Colombian dry Caribbean, South America. The water regimes included L1—irrigation based on 80% field capacity (FC), L2—irrigation based on 60% FC, L3—irrigation based on 50% FC, L4—irrigation based on 40% FC, L5—irrigation based on 20% FC, and L6—rainfed. The AquaCrop model uses the normalized water productivity—WP* (g m−2)—to estimate the attainable rate of crop growth under water limitation. The WP* for Guinea grass was 35.9 ± 0.42 g m−2 with a high coefficient of determination (R2 = 0.94). The model calibration results indicated the simulated CC was good (R2 = 0.84, RMSE = 17.4%, NRMSE = 23.2%, EF = 0.63 and d = 0.91). In addition, cumulative biomass simulations were very good (R2 = 1.0, RMSE = 5.13 t ha−1, NRMSE = 8.0%, EF = 0.93 and d = 0.98), and TAW was good (R2 = 0.85, RMSE = 5.4 mm, NRMSE = 7.0%, EF = 0.56 and d= 0.91). During validation, the CC simulations were moderately good for all water regimes (0.78 < R2 < 0.97; 12.0% < RMSE < 17.5%; 15.9% < NRMSE < 28.0%; 0.47 < EF < 0.87; 0.82 < d < 0.97), the cumulative biomass was very good (0.99 < R2 < 1.0; 0.77 t ha−1 < RMSE < 3.15 t ha−1; 2.5% < NRMSE < 21.9%; 0.92 < EF < 0.99; 0.97 < d < 1.0), and TAW was acceptable (0.70 < R2 < 0.90; 5.8 mm < RMSE < 21.7 mm, 7.6% < NRMSE < 36.7%; 0.15 < EF < 0.58 and 0.79 < d < 0.9). The results of this study provide an important basis for future research, such as estimating biomass production of high-producing grasses in tropical environments, yield effects under scenarios of climate variability, and change based on the presented parameterization and considering a wide range of environments and grazing variations.

Details

Title
Simulation of Crop Productivity for Guinea Grass (Megathyrsus maximus) Using AquaCrop under Different Water Regimes
Author
Terán-Chaves, César Augusto 1   VIAFID ORCID Logo  ; Mojica-Rodríguez, José Edwin 2 ; Vega-Amante, Alexander 2 ; Sonia Mercedes Polo-Murcia 2   VIAFID ORCID Logo 

 Corporación Colombiana de Investigación Agropecuaria—AGROSAVIA, Centro de Investigación Tibaitatá—km 14, Vía Mosquera-Bogotá, Mosquera 250047, Colombia 
 Corporación Colombiana de Investigación Agropecuaria—AGROSAVIA, Centro de Investigación Motilonia—km 5 Vía a Becerril, Agustín Codazzi 202050, Colombia 
First page
863
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785232973
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.