Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As the most comprehensive document types for the recording and display of real-world information regarding construction projects, 3D realistic models are capable of recording and displaying simultaneously textures and geometric shapes in the same 3D scene. However, at present, the documentation for much of construction infrastructure faces significant challenges. Based on TLS, GNSS/IMU, mature photogrammetry, a UAV platform, computer vision technologies, and AI algorithms, this study proposes a workflow for 3D modeling of complex structures with multiple-source data. A deep learning LoFTR network was used first for image matching, which can improve matching accuracy. Then, a NeuralRecon network was employed to generate a 3D point cloud with global consistency. GNSS information was used to reduce search space in image matching and produce an accurate transformation matrix between the image scene and the global reference system. In addition, to enhance the effectiveness and efficiency of the co-registration of the two-source point clouds, an RPM-net was used. The proposed workflow processed the 3D laser point cloud and UAV low-altitude multi-view image data to generate a complete, accurate, high-resolution, and detailed 3D model. Experimental validation on a real high formwork project was carried out, and the result indicates that the generated 3D model has satisfactory accuracy with a registration error value of 5 cm. Model comparison between the TLS, image-based, data fusion 1 (using the common method), and data fusion 2 (using the proposed method) models were conducted in terms of completeness, geometrical accuracy, texture appearance, and appeal to professionals. The results denote that the generated 3D model has similar accuracy to the TLS model yet also provides a complete model with a photorealistic appearance that most professionals chose as their favorite.

Details

Title
Multi-Sensor Data Fusion for 3D Reconstruction of Complex Structures: A Case Study on a Real High Formwork Project
Author
Zhao, Linlin 1 ; Zhang, Huirong 2 ; Mbachu, Jasper 3   VIAFID ORCID Logo 

 Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China; Beijing Key Laboratory of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Urban Security and Disaster Engineering of China Ministry of Education, Beijing University of Technology, Beijing 100124, China 
 Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China 
 Faculty of Society & Design, Bond University, Gold Coast, QLD 4226, Australia 
First page
1264
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785232991
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.