Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ground-penetrating radar (GPR) is an important nondestructive testing (NDT) tool for the underground exploration of urban roads. However, due to the large amount of GPR data, traditional manual interpretation is time-consuming and laborious. To address this problem, an efficient underground target detection method for urban roads based on neural networks is proposed in this paper. First, robust principal component analysis (RPCA) is used to suppress the clutter in the B-scan image. Then, three time-domain statistics of each A-scan signal are calculated as its features, and one backpropagation (BP) neural network is adopted to recognize A-scan signals to obtain the horizontal regions of targets. Next, the fusion and deletion (FAD) algorithm is used to further optimize the horizontal regions of targets. Finally, three time-domain statistics of each segmented A-scan signal in the horizontal regions of targets are extracted as the features, and another BP neural network is employed to recognize the segmented A-scan signals to obtain the vertical regions of targets. The proposed method is verified with both simulation and real GPR data. The experimental results show that the proposed method can effectively locate the horizontal ranges and vertical depths of underground targets for urban roads and has higher recognition accuracy and less processing time than the traditional segmentation recognition methods.

Details

Title
Efficient Underground Target Detection of Urban Roads in Ground-Penetrating Radar Images Based on Neural Networks
Author
Xue, Wei 1   VIAFID ORCID Logo  ; Chen, Kehui 1 ; Li, Ting 1 ; Liu, Li 1   VIAFID ORCID Logo  ; Zhang, Jian 2 

 School of Automation, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan 430074, China; Engineering Research Center of Intelligent Technology for Geo-Exploration, Ministry of Education, Wuhan 430074, China 
 School of Electronic Information, Wuhan University, Wuhan 430072, China 
First page
1346
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785234182
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.