Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Forests offer significant climate mitigation benefits, but existing emissions reduction assessment methodologies in forest-based mitigation activities are not scalable, which limits the development of carbon offset markets. In this study, we propose a measurement method using optical satellite imagery and space LiDAR data fusion to assess forest emissions reduction. Compared with the ALS-based carbon stock density estimation method, our approach presented a strong scalability for mapping 10 m-resolution carbon stock at a large scale. It was observed that dense canopy top height estimated by combining GEDI and Sentinel-2 could accurately predict forest carbon stock measurements estimated by the ALS-based method (R2 = 0.72). By conducting an on-site experiment of an ongoing forest carbon project in China, we found the consistency between the emissions reduction assessed by the data fusion measurement method (589,169 tCO2e) and the official ex post-monitored emissions reduction in the monitoring report (598,442 tCO2e). Our results demonstrated that forest carton stock estimation using optical satellite imagery and space LiDAR data fusion is efficient and economical for forest emissions reduction assessment. The acquisition of the data was more efficient over large areas with high frequencies using space-based technology. We further discussed the challenge of building a near-real-time monitoring system for forest-based mitigation activities by utilizing optical satellite imagery and space LiDAR data and pointed out that a quality control framework should be established to help us understand the sources of uncertainty in LiDAR-based models and improve carbon stock estimation from individual trees to forest carbon projects to meet the requirements of carbon standards better.

Details

Title
Forest Emissions Reduction Assessment Using Optical Satellite Imagery and Space LiDAR Fusion for Carbon Stock Estimation
Author
Jiao, Yue 1   VIAFID ORCID Logo  ; Wang, Dacheng 1 ; Yao, Xiaojing 2   VIAFID ORCID Logo  ; Wang, Shudong 2 ; Tianhe Chi 2 ; Yu, Meng 2 

 Aerospace Information Research Institute, Chinese Academy of Sciences, No. 9 Dengzhuang South Road, Haidian District, Beijing 100094, China; Fujian Space Carbon Co., Ltd., No. 19 Tianxiang Road, Yanping District, Nanping 353000, China 
 Aerospace Information Research Institute, Chinese Academy of Sciences, No. 9 Dengzhuang South Road, Haidian District, Beijing 100094, China 
First page
1410
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785234275
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.