Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

SAR data provide sufficient information for burned area detection in any weather condition, making it superior to optical data. In this study, we assess the potential of Sentinel-1 SAR images for precise forest-burned area mapping using deep convolutional neural networks (DCNN). Accurate mapping with DCNN techniques requires high quantity and quality training data. However, labeled ground truth might not be available in many cases or requires professional expertise to generate them via visual interpretation of aerial photography or field visits. To overcome this problem, we proposed an unsupervised method that derives DCNN training data from fuzzy c-means (FCM) clusters with the highest and lowest probability of being burned. Furthermore, a saliency-guided (SG) approach was deployed to reduce false detections and SAR image speckles. This method defines salient regions with a high probability of being burned. These regions are not affected by noise and can improve the model performance. The developed approach based on the SG-FCM-DCNN model was investigated to map the burned area of Rossomanno-Grottascura-Bellia, Italy. This method significantly improved the burn detection ability of non-saliency-guided models. Moreover, the proposed model achieved superior accuracy of 87.67% (i.e., more than 2% improvement) compared to other saliency-guided techniques, including SVM and DNN.

Details

Title
An Unsupervised Saliency-Guided Deep Convolutional Neural Network for Accurate Burn Mapping from Sentinel-1 SAR Data
Author
Radman, Ali 1   VIAFID ORCID Logo  ; Shah-Hosseini, Reza 1   VIAFID ORCID Logo  ; Homayouni, Saeid 2   VIAFID ORCID Logo 

 School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran 14174-66191, Iran 
 Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, 490 Rue de la Couronne, Quebec City, QC G1K 9A9, Canada 
First page
1184
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785234861
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.