Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents a test stand for testing alternating current electrical parameters of Cu–SiO2 multilayer nanocomposite structures obtained by the dual-source non-reactive magnetron sputtering method (resistance, capacitance, phase shift angle, and dielectric loss angle tangent δ). In order to confirm the dielectric nature of the test structure, measurements in the temperature range from room temperature to 373 K were carried out. The alternating current frequencies in which the measurements were made ranged from 4 Hz to 7.92 MHz. To improve the implementation of measurement processes, a program was written to control the impedance meter in the MATLAB environment. Structural studies by SEM were conducted to determine the effect of annealing on multilayer nanocomposite structures. Based on the static analysis of the 4-point method of measurements, the standard uncertainty of type A was determined, and taking into account the manufacturer’s recommendations regarding the technical specification, the measurement uncertainty of type B.

Details

Title
Preparation of Discontinuous Cu/SiO2 Multilayers—AC Conduction and Determining the Measurement Uncertainty
Author
Wilczyńska, Aleksandra 1   VIAFID ORCID Logo  ; Kociubiński, Andrzej 2   VIAFID ORCID Logo  ; Kołtunowicz, Tomasz N 1   VIAFID ORCID Logo 

 Department of Electrical Devices and High Voltage Technology, Lublin University of Technology, 20-618 Lublin, Poland 
 Department of Electronic and Information Technologies, Lublin University of Technology, 20-618 Lublin, Poland 
First page
2842
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785236692
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.