Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Because of societal changes, human activity recognition, part of home care systems, has become increasingly important. Camera-based recognition is mainstream but has privacy concerns and is less accurate under dim lighting. In contrast, radar sensors do not record sensitive information, avoid the invasion of privacy, and work in poor lighting. However, the collected data are often sparse. To address this issue, we propose a novel Multimodal Two-stream GNN Framework for Efficient Point Cloud and Skeleton Data Alignment (MTGEA), which improves recognition accuracy through accurate skeletal features from Kinect models. We first collected two datasets using the mmWave radar and Kinect v4 sensors. Then, we used zero-padding, Gaussian Noise (GN), and Agglomerative Hierarchical Clustering (AHC) to increase the number of collected point clouds to 25 per frame to match the skeleton data. Second, we used Spatial Temporal Graph Convolutional Network (ST-GCN) architecture to acquire multimodal representations in the spatio-temporal domain focusing on skeletal features. Finally, we implemented an attention mechanism aligning the two multimodal features to capture the correlation between point clouds and skeleton data. The resulting model was evaluated empirically on human activity data and shown to improve human activity recognition with radar data only. All datasets and codes are available in our GitHub.

Details

Title
MTGEA: A Multimodal Two-Stream GNN Framework for Efficient Point Cloud and Skeleton Data Alignment
Author
Lee, Gawon  VIAFID ORCID Logo  ; Kim, Jihie  VIAFID ORCID Logo 
First page
2787
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785236893
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.