Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cable’s fundamental frequency (CFF) is an important characteristic of the working state of long-span cable-stayed bridges. The change in the bridge’s temperature field will influence CFF by altering the cable’s tension and the cables’ sags. An accurate regression model between the temperature-induced variation of CFF and the real-time changing temperature field should be established. Then, the reference value of the temperature-induced variation of CFF can be obtained after inputting the real-time temperature data. In this study, an intelligent real-time prediction model for CFF is proposed based on the full-bridge temperature field, including the average temperature of the main beam, the vertical temperature difference of the main beam, and the temperature of the cable tower. Besides, a machine learning method named the long short-term memory (LSTM) network is exploited to ensure the nonlinear fitting performance of the model, and a paradigm for optimal hyperparameter selection and training strategy selection is provided. To verify the superiority of the LSTM-based model, the output accuracy of the linear regression, BP network, and LSTM network was tested and compared using the monitoring data collected from cable sensors in the main span and side span, which provides an important basis for the intelligent maintenance and sustainable operation of the bridge cables.

Details

Title
Real-Time Intelligent Prediction Method of Cable’s Fundamental Frequency for Intelligent Maintenance of Cable-Stayed Bridges
Author
Yong-Qiang, Li 1 ; Han-Wei, Zhao 2   VIAFID ORCID Logo  ; Zi-Xiang Yue 2 ; Yi-Wei, Li 2 ; Zhang, Yan 2 ; Da-Cheng, Zhao 3 

 Urban Lighting Management Office of Liuzhou, 1 Hangsan Road, Liuzhou 545005, China 
 Key Laboratory of Concrete and Pre-Stressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing 210096, China 
 China Railway Bridge & Tunnel Technologies Co., Ltd., 8 Panneng Road, Nanjing 210061, China 
First page
4086
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785240651
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.