Full text

Turn on search term navigation

© 2023 Wei et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

High-dimensional space includes many subspaces so that anomalies can be hidden in any of them, which leads to obvious difficulties in abnormality detection. Currently, most existing anomaly detection methods tend to measure distances between data points. Unfortunately, the distance between data points becomes more similar as the dimensionality of the input data increases, resulting in difficulties in differentiation between data points. As such, the high dimensionality of input data brings an obvious challenge for anomaly detection. To address this issue, this article proposes a hybrid method of combining a sparse autoencoder with a support vector machine. The principle is that by first using the proposed sparse autoencoder, the low-dimensional features of the input dataset can be captured, so as to reduce its dimensionality. Then, the support vector machine separates abnormal features from normal features in the captured low-dimensional feature space. To improve the precision of separation, a novel kernel is derived based on the Mercer theorem. Meanwhile, to prevent normal points from being mistakenly classified, the upper limit of the number of abnormal points is estimated by the Chebyshev theorem. Experiments on both the synthetic datasets and the UCI datasets show that the proposed method outperforms the state-of-the-art detection methods in the ability of anomaly detection. We find that the newly designed kernel can explore different sub-regions, which is able to better separate anomaly instances from the normal ones. Moreover, our results suggested that anomaly detection models suffer less negative effects from the complexity of data distribution in the space reconstructed by those layered features than in the original space.

Details

Title
Anomaly detection for blueberry data using sparse autoencoder-support vector machine
Author
Wei, Dianwen; Zheng, Jian; Qu, Hongchun
Publication year
2023
Publication date
Mar 10, 2023
Publisher
PeerJ, Inc.
e-ISSN
23765992
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2785473525
Copyright
© 2023 Wei et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.