It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Capillary rise within rough structures is a wetting phenomenon that is fundamental to survival in biological organisms, deterioration of our built environment, and performance of numerous innovations, from 3D microfluidics to carbon capture. Here, to accurately predict rough capillary rise, we must couple two wetting phenomena: capillary rise and hemiwicking. Experiments, simulations, and theory demonstrate how this coupling challenges our conventional understanding and intuitions of wetting and roughness. Firstly, the critical contact angle for hemiwicking becomes separation-dependent so that hemiwicking can vanish for even highly wetting liquids. Secondly, the rise heights for perfectly wetting liquids can differ between smooth and rough systems, even with the same 0∘ contact angle. Finally, the raised liquid volumes are substantially increased in rough compared to smooth systems. To explain and predict all rise heights and volumes with quantitative accuracy, we present the Dual-Rise model that is valid for general roughness, liquids, and surface wettabilities.
Capillary rise is a process whereby a liquid spontaneously rises against gravity within a narrow space due to capillary forces; but even though it is a well-understood phenomenon in smooth channels, predictive models to account for surface roughness are lacking. Here, the authors develop a theory of capillary rise in textured channels, supported by simulations and experiments, demonstrating the complex interplay between channel width, texture and wettability.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Durham University, Department of Physics, Durham, UK (GRID:grid.8250.f) (ISNI:0000 0000 8700 0572); University of East Anglia, School of Engineering, Norwich, UK (GRID:grid.8273.e) (ISNI:0000 0001 1092 7967)
2 ExxonMobil Research and Engineering Company, Corporate Strategic Research, Annandale, USA (GRID:grid.421234.2) (ISNI:0000 0004 1112 1641)
3 Durham University, Department of Physics, Durham, UK (GRID:grid.8250.f) (ISNI:0000 0000 8700 0572)