Abstract

The purpose of this work is the development of a trained artificial neural network for surrogate modeling of the mechanical response of elasto-viscoplastic grain microstructures. To this end, a U-Net-based convolutional neural network (CNN) is trained using results for the von Mises stress field from the numerical solution of initial-boundary-value problems (IBVPs) for mechanical equilibrium in such microstructures subject to quasi-static uniaxial extension. The resulting trained CNN (tCNN) accurately reproduces the von Mises stress field about 500 times faster than numerical solutions of the corresponding IBVP based on spectral methods. Application of the tCNN to test cases based on microstructure morphologies and boundary conditions not contained in the training dataset is also investigated and discussed.

Details

Title
An artificial neural network for surrogate modeling of stress fields in viscoplastic polycrystalline materials
Author
Khorrami, Mohammad S. 1 ; Mianroodi, Jaber R. 2   VIAFID ORCID Logo  ; Siboni, Nima H. 2 ; Goyal, Pawan 3 ; Svendsen, Bob 4   VIAFID ORCID Logo  ; Benner, Peter 3 ; Raabe, Dierk 1   VIAFID ORCID Logo 

 Max-Planck-Institut für Eisenforschung, Microstructure Physics and Alloy Design, Düsseldorf, Germany (GRID:grid.13829.31) (ISNI:0000 0004 0491 378X) 
 Max-Planck-Institut für Eisenforschung, Microstructure Physics and Alloy Design, Düsseldorf, Germany (GRID:grid.13829.31) (ISNI:0000 0004 0491 378X); Ergodic Labs, Berlin, Germany (GRID:grid.13829.31) 
 Max Planck Institute for Dynamics of Complex Technical Systems, Computational Methods in Systems and Control Theory, Magdeburg, Germany (GRID:grid.419517.f) (ISNI:0000 0004 0491 802X) 
 Max-Planck-Institut für Eisenforschung, Microstructure Physics and Alloy Design, Düsseldorf, Germany (GRID:grid.13829.31) (ISNI:0000 0004 0491 378X); RWTH Aachen University, Material Mechanics, Aachen, Germany (GRID:grid.1957.a) (ISNI:0000 0001 0728 696X) 
Pages
37
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20573960
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2786375410
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.