Full Text

Turn on search term navigation

© 2023 Yoon et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Machine learning (ML) algorithms to detect critical findings on head CTs may expedite patient management. Most ML algorithms for diagnostic imaging analysis utilize dichotomous classifications to determine whether a specific abnormality is present. However, imaging findings may be indeterminate, and algorithmic inferences may have substantial uncertainty. We incorporated awareness of uncertainty into an ML algorithm that detects intracranial hemorrhage or other urgent intracranial abnormalities and evaluated prospectively identified, 1000 consecutive noncontrast head CTs assigned to Emergency Department Neuroradiology for interpretation. The algorithm classified the scans into high (IC+) and low (IC-) probabilities for intracranial hemorrhage or other urgent abnormalities. All other cases were designated as No Prediction (NP) by the algorithm. The positive predictive value for IC+ cases (N = 103) was 0.91 (CI: 0.84–0.96), and the negative predictive value for IC- cases (N = 729) was 0.94 (0.91–0.96). Admission, neurosurgical intervention, and 30-day mortality rates for IC+ was 75% (63–84), 35% (24–47), and 10% (4–20), compared to 43% (40–47), 4% (3–6), and 3% (2–5) for IC-. There were 168 NP cases, of which 32% had intracranial hemorrhage or other urgent abnormalities, 31% had artifacts and postoperative changes, and 29% had no abnormalities. An ML algorithm incorporating uncertainty classified most head CTs into clinically relevant groups with high predictive values and may help accelerate the management of patients with intracranial hemorrhage or other urgent intracranial abnormalities.

Details

Title
Incorporating algorithmic uncertainty into a clinical machine deep learning algorithm for urgent head CTs
Author
Yoon, Byung C  VIAFID ORCID Logo  ; Pomerantz, Stuart R; Mercaldo, Nathaniel D; Goyal, Swati; Eric M. L’Italien; Lev, Michael H; Buch, Karen A; Buchbinder, Bradley R; Chen, John W; Conklin, John; Gupta, Rajiv; Hunter, George J; Kamalian, Shahmir C; Kelly, Hillary R; Rapalino, Otto  VIAFID ORCID Logo  ; Rincon, Sandra P; Romero, Javier M; He, Julian; Schaefer, Pamela W; Do, Synho; González, Ramon Gilberto  VIAFID ORCID Logo 
First page
e0281900
Section
Research Article
Publication year
2023
Publication date
Mar 2023
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2786466550
Copyright
© 2023 Yoon et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.