Full Text

Turn on search term navigation

© 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The intestinal flora has become very active in studies related to Parkinson's disease (PD) in recent years. The microbe-gut-brain axis is closely related to the maintenance of brain homeostasis as well as PD pathogenesis. Alterations in gut bacteria can contribute to neuroinflammation and dopamine (DA) neurodegeneration. Lactobacillus murinus, a gram-positive bacterium, is a commensal gut bacteria present in the mammalian gut and considered as a potential probiotic due to its beneficial effects, including anti-inflammatory and antibacterial actions. In this study, the effects of live L. murinus and heat-killed L. murinus on DA neuronal damage in rats and the underlying mechanisms were investigated. Data showed that heat-killed L. murinus ameliorated 6-hydroxydopamine-induced motor dysfunctions and loss of substantia nigra DA neurons, while no protection was shown in live L. murinus treatment. At the same time, heat-killed L. murinus reduced the activation of NLRP3 inflammasome in microglia and the secretion of pro-inflammatory factors, thus inhibiting the development of neuroinflammation. Furthermore, heat-killed L. murinus failed to display its original neuroprotective properties in NLRP3 inflammasome knockout mice. Together, heat-killed L. murinus conferred neuroprotection against DA neuronal loss via the inhibition of microglial NLRP3 inflammasome activation. These findings provide a promising potential for future applications of L. murinus, and also beneficial strategy for PD treatment.

Details

Title
Heat-killed Lactobacillus murinus confers neuroprotection against dopamine neuronal loss by targeting NLRP3 inflammasome
Author
Hong-Xia, Fan 1 ; Sheng, Shuo 1 ; Dai-Di, Li 1 ; Jing-Jie, Li 1 ; Guo-Qing, Wang 1 ; Zhang, Feng 1   VIAFID ORCID Logo 

 Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China 
Section
RESEARCH ARTICLES
Publication year
2023
Publication date
Mar 2023
Publisher
John Wiley & Sons, Inc.
e-ISSN
23806761
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2786541309
Copyright
© 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.