Full text

Turn on search term navigation

© 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Overshooting cloud tops (OTs) form in deep convective storms when strong updrafts overshoot the tropopause. An OT is a well-known indicator of convective updrafts and severe weather conditions. Here, we develop an OT detection algorithm using thermal infrared (IR) channels and apply this algorithm to about 20 years' worth of MODIS data from both Terra and Aqua satellites to form an extensive, near-global climatology of OT occurrences. The algorithm is based on a logistic model which is trained using A-Train observations. We demonstrate that the overall accuracy of our approach is about 0.9 when the probability of the OT candidates is larger than 0.9. The OT climatology reveals a pattern that follows the climatology of deep convection and shallow convection over the midlatitude oceans during winter cold-air outbreaks. OTs appear most frequently over the Intertropical Convergence Zone (ITCZ), central and southeastern North America, tropical and subtropical South America, southeastern and southern Asia, tropical and subtropical Africa, and northern middle–high latitudes. OT spatial distributions show strong seasonal and diurnal variabilities. Seasonal OT variations shift with large-scale climate systems such as the ITCZ and local monsoonal systems, including the South Asian monsoon, North American monsoon, and West African monsoon. OT diurnal variations agree with the known diurnal cycle of convection. Maximum OT occurrences are in the afternoon over most land areas and around midnight over ocean, and the OT diurnal cycle is stronger and more varied over land than over ocean. OTs over land are usually colder than over ocean, except at around 10:30 LT (Equator-crossing time). The top 10 coldest OTs from both Terra and Aqua mostly occur over land and at night. This study provides OT climatology for the first time, as derived from 2 decades of MODIS data, that represents the longest and stable satellite records.

Details

Title
Near-global distributions of overshooting tops derived from Terra and Aqua MODIS observations
Author
Hong, Yulan 1   VIAFID ORCID Logo  ; Nesbitt, Stephen W 1 ; Trapp, Robert J 1   VIAFID ORCID Logo  ; Larry Di Girolamo 1   VIAFID ORCID Logo 

 Department of Atmospheric Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA 
Pages
1391-1406
Publication year
2023
Publication date
2023
Publisher
Copernicus GmbH
ISSN
18671381
e-ISSN
18678548
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2787060807
Copyright
© 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.