It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Using the well established principles of Lorentz invariance, CP and CPT symmetry, and quantum statistics we do a model-independent study of effects of possible non-standard couplings of (Dirac and Majorana) neutrinos. The study is sensitive to the different quantum statistical properties of the Dirac and Majorana neutrinos which, contrary to neutrino-mediated processes of lepton number violation, could lead to observable effects not suppressed by the small ratios of neutrino and heavier particle masses. For processes with a neutrino-antineutrino pair of the same flavor in the final state, we formulate the “Dirac Majorana confusion theorem (DMCT)” showing why it is normally very difficult to observe the different behaviour of both kinds of neutrinos in experiments if they have only the standard model (SM)-like left-handed vector couplings to gauge bosons. We discuss deviations from the confusion theorem in the presence of non-standard neutrino interactions, allowing to discover or constrain such novel couplings. We illustrate the general results with two chosen examples of neutral current processes,
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Yonsei University, Department of Physics and IPAP, Seoul, Korea (GRID:grid.15444.30) (ISNI:0000 0004 0470 5454); Dongshin University, Institute of High Energy Physics, Naju, Korea (GRID:grid.412069.8) (ISNI:0000 0004 1770 4266)
2 University of Warsaw, Faculty of Physics, Warsaw, Poland (GRID:grid.12847.38) (ISNI:0000 0004 1937 1290)