Abstract

High entropy oxides (HEOs) with chemically disordered multi-cation structure attract intensive interest as negative electrode materials for battery applications. The outstanding electrochemical performance has been attributed to the high-entropy stabilization and the so-called ‘cocktail effect’. However, the configurational entropy of the HEO, which is thermodynamically only metastable at room-temperature, is insufficient to drive the structural reversibility during conversion-type battery reaction, and the ‘cocktail effect’ has not been explained thus far. This work unveils the multi-cations synergy of the HEO Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O at atomic and nanoscale during electrochemical reaction and explains the ‘cocktail effect’. The more electronegative elements form an electrochemically inert 3-dimensional metallic nano-network enabling electron transport. The electrochemical inactive cation stabilizes an oxide nanophase, which is semi-coherent with the metallic phase and accommodates Li+ ions. This self-assembled nanostructure enables stable cycling of micron-sized particles, which bypasses the need for nanoscale pre-modification required for conventional metal oxides in battery applications. This demonstrates elemental diversity is the key for optimizing multi-cation electrode materials.

Though high entropy oxides have been explored as possible conversion-type negative electrodes for Li-ion batteries, the roles of the different elements remain unclear. Here the authors determine the behavior of each element during electrochemical cycling and connect it to the nanoscale structure.

Details

Title
Synergy of cations in high entropy oxide lithium ion battery anode
Author
Wang, Kai 1 ; Hua, Weibo 2   VIAFID ORCID Logo  ; Huang, Xiaohui 1 ; Stenzel, David 1 ; Wang, Junbo 1 ; Ding, Ziming 1 ; Cui, Yanyan 1 ; Wang, Qingsong 3   VIAFID ORCID Logo  ; Ehrenberg, Helmut 2   VIAFID ORCID Logo  ; Breitung, Ben 1   VIAFID ORCID Logo  ; Kübel, Christian 4   VIAFID ORCID Logo  ; Mu, Xiaoke 3 

 Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Institute of Nanotechnology (INT), Eggenstein-Leopoldshafen, Germany (GRID:grid.7892.4) (ISNI:0000 0001 0075 5874); Technical University Darmstadt, Department of Materials and Earth Sciences, Darmstadt, Germany (GRID:grid.6546.1) (ISNI:0000 0001 0940 1669) 
 Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Institute for Applied Materials (IAM), Eggenstein-Leopoldshafen, Germany (GRID:grid.7892.4) (ISNI:0000 0001 0075 5874) 
 Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Institute of Nanotechnology (INT), Eggenstein-Leopoldshafen, Germany (GRID:grid.7892.4) (ISNI:0000 0001 0075 5874) 
 Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Institute of Nanotechnology (INT), Eggenstein-Leopoldshafen, Germany (GRID:grid.7892.4) (ISNI:0000 0001 0075 5874); Technical University Darmstadt, Department of Materials and Earth Sciences, Darmstadt, Germany (GRID:grid.6546.1) (ISNI:0000 0001 0940 1669); Karlsruhe Institute of Technology (KIT), Helmholtzstraße 11, Helmholtz-Institute Ulm for Electrochemical Energy Storage (HIU), Ulm, Germany (GRID:grid.7892.4) (ISNI:0000 0001 0075 5874); Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Karlsruhe Nano Micro Facility (KNMF), Eggenstein-Leopoldshafen, Germany (GRID:grid.7892.4) (ISNI:0000 0001 0075 5874) 
Pages
1487
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2787776140
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.