It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Climate change and depleting water sources demand scarce natural water supplies like air moisture to be used as an irrigation water source. Wheat production is threatened by the climate variability and extremes climate events especially heat waves and drought. The present study focused to develop the wheat plant for self-irrigation through optimizing leaf architecture and surface properties for precise irrigation.
Methods
Thirty-four genotypes were selected from 1796 genotypes with all combinations of leaf angle and leaf rolling. These genotypes were characterized for morpho-physiological traits and soil moisture content at stem-elongation and booting stages. Further, a core set of ten genotypes was evaluated for stem flow efficiency and leaf wettability.
Results
Biplot, heat map, and correlation analysis indicated wide diversity and traits association. The environmental parameters indicated substantial amount of air moisture (> 60% relative humidity) at the critical wheat growth stages. Leaf angle showed negative association with leaf rolling, physiological and yield traits, adaxial and abaxial contact angle while leaf angle showed positive association with the stem flow water. The wettability and air moisture harvesting indicated that the genotypes (coded as 1, 7, and 18) having semi-erect to erect leaf angle, spiral rolling, and hydrophilic leaf surface (<90o) with contact angle hysteresis less than 10o had higher soil moisture content (6-8%) and moisture harvesting efficiency (3.5 ml).
Conclusions
These findings can provide the basis to develop self-irrigating, drought-tolerant wheat cultivars as an adaptation to climate change.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer