It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Aim of this study is to test the predictive value of Pulse Wave Transit Time (PWTT) for fluid responsiveness in comparison to the established fluid responsiveness parameters pulse pressure (ΔPP) and corrected flow time (FTc) during major abdominal surgery.
Methods
Forty patients undergoing major abdominal surgery were enrolled with continuous monitoring of PWTT (LifeScope® Modell J BSM-9101 Nihon Kohden Europe GmbH, Rosbach, Germany) and stroke volume (Esophageal Doppler Monitoring CardioQ-ODM®, Deltex Medical Ltd, Chichester, UK). In case of hypovolemia (difference in pulse pressure [∆PP] ≥ 9%, corrected flow time [FTc] ≤ 350 ms) a fluid bolus of 7 ml/kg ideal body weight was administered. Receiver operating characteristics (ROC) curves and corresponding areas under the curve (AUCs) were used to compare different methods of determining PWTT. A Wilcoxon test was used to discriminate fluid responders (increase in stroke volume of ≥ 10%) from non-responders. The predictive value of PWTT for fluid responsiveness was compared by testing for differences between ROC curves of PWTT, ΔPP and FTc using the methods by DeLong.
Results
AUCs (area under the ROC-curve) to predict fluid responsiveness for PWTT-parameters were 0.61 (raw c finger Q), 0.61 (raw c finger R), 0.57 (raw c ear Q), 0.53 (raw c ear R), 0.54 (raw non-c finger Q), 0.52 (raw non-c finger R), 0.50 (raw non-c ear Q), 0.55 (raw non-c ear R), 0.63 (∆ c finger Q), 0.61 (∆ c finger R), 0.64 (∆ c ear Q), 0.66 (∆ c ear R), 0.59 (∆ non-c finger Q), 0.57 (∆ non-c finger R), 0.57 (∆ non-c ear Q), 0.61 (∆ non-c ear R) [raw measurements vs. ∆ = respiratory variation; c = corrected measurements according to Bazett’s formula vs. non-c = uncorrected measurements; Q vs. R = start of PWTT-measurements with Q- or R-wave in ECG; finger vs. ear = pulse oximetry probe location]. Hence, the highest AUC to predict fluid responsiveness by PWTT was achieved by calculating its respiratory variation (∆PWTT), with a pulse oximeter attached to the earlobe, using the R-wave in ECG, and correction by Bazett’s formula (AUC best-PWTT 0.66, 95% CI 0.54–0.79). ∆PWTT was sufficient to discriminate fluid responders from non-responders (p = 0.029). No difference in predicting fluid responsiveness was found between best-PWTT and ∆PP (AUC 0.65, 95% CI 0.51–0.79; p = 0.88), or best-PWTT and FTc (AUC 0.62, 95% CI 0.49–0.75; p = 0.68).
Conclusion
ΔPWTT shows poor ability to predict fluid responsiveness intraoperatively. Moreover, established alternatives ΔPP and FTc did not perform better.
Trial registration
Prior to enrolement on clinicaltrials.gov (NC T03280953; date of registration 13/09/2017).
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer