It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Patients with colorectal liver metastases (CRLM) combined with hepatic lymph node (HLN) metastases have a poor prognosis. In this study, we developed and validated a model using clinical and magnetic resonance imaging (MRI) parameters to predict HLN status before surgery.
Methods
A total of 104 CRLM patients undergoing hepatic lymphonodectomy with pathologically confirmed HLN status after preoperative chemotherapy were enrolled in this study. The patients were further divided into a training group (n = 52) and a validation group (n = 52). The apparent diffusion coefficient (ADC) values, including ADCmean and ADCmin of the largest HLN before and after treatment, were measured. rADC was calculated referring to the target liver metastases, spleen, and psoas major muscle (rADC-LM, rADC-SP, rADC-m). In addition, ADC change rate (Δ% ADC) was quantitatively calculated. A multivariate logistic regression model for predicting HLN status in CRLM patients was constructed using the training group and further tested in the validation group.
Results
In the training cohort, post-ADCmean (P = 0.018) and the short diameter of the largest lymph node after treatment (P = 0.001) were independent predictors for metastatic HLN in CRLM patients. The model’s AUC was 0.859 (95% CI, 0.757-0.961) and 0.767 (95% CI 0.634-0.900) in the training and validation cohorts, respectively. Patients with metastatic HLN showed significantly worse overall survival (p = 0.035) and recurrence-free survival (p = 0.015) than patients with negative HLN.
Conclusions
The developed model using MRI parameters could accurately predict HLN metastases in CRLM patients and could be used to preoperatively assess the HLN status and facilitate surgical treatment decisions in patients with CRLM.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer