It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
COVID-19 has seriously threatened public health, and transdermal vaccination is an effective way to prevent pathogen infection. Microneedles (MNs) can damage the stratum corneum to allow passive diffusion of vaccine macromolecules, but the delivery efficiency is low, while iontophoresis can actively promote transdermal delivery but fails to transport vaccine macromolecules due to the barrier of the stratum corneum. Herein, we developed a wearable iontophoresis-driven MN patch and its iontophoresis-driven device for active and efficient transdermal vaccine macromolecule delivery. Polyacrylamide/chitosan hydrogels with good biocompatibility, excellent conductivity, high elasticity, and a large loading capacity were prepared as the key component for vaccine storage and active iontophoresis. The transdermal vaccine delivery strategy of the iontophoresis-driven MN patch is “press and poke, iontophoresis-driven delivery, and immune response”. We demonstrated that the synergistic effect of MN puncture and iontophoresis significantly promoted transdermal vaccine delivery efficiency. In vitro experiments showed that the amount of ovalbumin delivered transdermally using the iontophoresis-driven MN patch could be controlled by the iontophoresis current. In vivo immunization studies in BALB/c mice demonstrated that transdermal inoculation of ovalbumin using an iontophoresis-driven MN patch induced an effective immune response that was even stronger than that of traditional intramuscular injection. Moreover, there was little concern about the biosafety of the iontophoresis-driven MN patch. This delivery system has a low cost, is user-friendly, and displays active delivery, showing great potential for vaccine self-administration at home.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Shenzhen Campus of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen, PR China (GRID:grid.12981.33) (ISNI:0000 0001 2360 039X)
2 Sun Yat-sen University, Department of Dermatovenereology, The Seventh Affiliated Hospital, Shenzhen, PR China (GRID:grid.12981.33) (ISNI:0000 0001 2360 039X)
3 Sun Yat-sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Guangzhou, PR China (GRID:grid.12981.33) (ISNI:0000 0001 2360 039X)