Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The appearance and meat quality of Penaeus vannamei are important indexes in the production process, and the quality of the product will be reduced if the defective shrimp is mixed in during processing. In order to solve this problem, a quality detection model of Penaeus vannamei based on deep learning was put forward. Firstly, the self-made dataset of Penaeus vannamei was expanded to enhance the generalization ability of the neural network. Secondly, the backbone of YOLOv5 (you only look once v5) is replaced by the lightweight network PP-LCNet that removes the dense layer at the end, which reduces the model parameters and calculation. Then, the 7 × 7 convolution DepthSepConv module is embedded in a PP-LCNet backbone, which effectively strengthens the feature extraction ability of the network. Ultimately, SiLU activation function is used to replace the Hardsigmoid and Hardswish activation functions in the PP-LCNet backbone to enhance the regularization ability and detection speed of the network. Through comparative experiments, the all-round performance of the Shrimp-YOLOv5s network is higher than the current mainstream classical model and the lightweight model. The [email protected], [email protected]:0.95, detection speed, parameters, and calculation of Shrimp-YOLOv5s are 98.5%, 88.1%, 272.8 FPS (frames per second), 4.8 M, and 9.0 GFLOPs (giga floating point operations) respectively.

Details

Title
Quality Detection Method of Penaeus vannamei Based on Lightweight YOLOv5s Network
Author
Chen, Yanyi 1 ; Huang, Xuhong 2 ; Zhu, Cunxin 1 ; Tang, Shengping 1 ; Zhao, Nan 1 ; Xiao, Weihao 1 

 School of Electronic, Electrical Engineering and Physics, Fujian University of Technology, Fuzhou 350118, China; Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology, Fuzhou 350011, China 
 School of Electronic, Electrical Engineering and Physics, Fujian University of Technology, Fuzhou 350118, China; Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology, Fuzhou 350011, China; Institute of Intelligent Ocean and Engineering, Fujian University of Technology, Fuzhou 350108, China 
First page
690
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20770472
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791552295
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.