Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Patients with anterior cruciate ligament (ACL) deficiency (ACLD) tend to have altered lower extremity kinematics and dynamics. Clinical diagnosis of ACLD requires more objective and convenient evaluation criteria. Twenty-five patients with ACLD before ACL reconstruction and nine healthy volunteers were recruited. Five experimental jogging data sets of each participant were collected and calculated using a musculoskeletal model. The resulting knee flexion and muscle force data were analyzed using a t-test for characteristic points, which were the time points in the gait cycle when the most significant difference between the two groups was observed. The data of the characteristic points were processed with principal component analysis to generate a composite index for multivariable linear regression. The accuracy rate of the regression model in diagnosing patients with ACLD was 81.4%. This study demonstrates that the multivariable linear regression model and composite index can be used to diagnose patients with ACLD. The composite index and characteristic points can be clinically objective and can be used to extract effective information quickly and conveniently.

Details

Title
Leveraging Multivariable Linear Regression Analysis to Identify Patients with Anterior Cruciate Ligament Deficiency Using a Composite Index of the Knee Flexion and Muscle Force
Author
Li, Haoran 1   VIAFID ORCID Logo  ; Huang, Hongshi 2   VIAFID ORCID Logo  ; Ren, Shuang 2 ; Qiguo Rong 1   VIAFID ORCID Logo 

 Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China 
 Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing 100871, China 
First page
284
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23065354
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791585590
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.