Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Hydrogen gas storage place has been increasing daily because of its consumption. Hydrogen gas is a dream fuel of the future with many social, economic and environmental benefits to its credit. However, many hydrogen storage tanks exploded accidentally and significantly lost the economy, infrastructure, and living beings. In this study, a protection wall under a worst-case scenario explosion of a hydrogen gas tank was analyzed with commercial software LS-DYNA. TNT equivalent method was used to calculate the weight of TNT for Hydrogen. Reinforced concrete and composite protection wall under TNT explosion was analyzed with a different distance of TNT. The initial dimension of the reinforced concrete protection wall was taken from the Korea gas safety code book (KGS FP217) and studied the various condition. H-beam was used to make the composite protection wall. Arbitrary-Lagrangian-Eulerian (ALE) simulation from LS-DYNA and ConWep pressure had a good agreement. Used of the composite structure had a minimum displacement than a normal reinforced concrete protection wall. During the worst-case scenario explosion of a hydrogen gas 300 kg storage tank, the minimum distance between the hydrogen gas tank storage and protection wall should be 3.6 m.

Details

Title
Behavior of Barrier Wall under Hydrogen Storage Tank Explosion with Simulation and TNT Equivalent Weight Method
Author
Kim, Seungwon; Jang, Taejin; Oli, Topendra; Park, Cheolwoo  VIAFID ORCID Logo 
First page
3744
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791587114
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.