Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Teacher job satisfaction is an important aspect of academic performance, student retention, and teacher retention. We propose to determine the predictive model of job satisfaction of basic education teachers using machine learning techniques. The original data set consisted of 15,087 instances and 942 attributes from the national survey of teachers from public and private educational institutions of regular basic education (ENDO-2018) carried out by the Ministry of Education of Peru. We used the ANOVA F-test filter and the Chi-Square filter as feature selection techniques. In the modeling phase, the logistic regression algorithms, Gradient Boosting, Random Forest, XGBoost and Decision Trees-CART were used. Among the algorithms evaluated, XGBoost and Random Forest stand out, obtaining similar results in 4 of the 8 metrics evaluated, these are: balanced accuracy of 74%, sensitivity of 74%, F1-Score of 0.48 and negative predictive value of 0.94. However, in terms of the area under the ROC curve, XGBoost scores 0.83, while Random Forest scores 0.82. These algorithms also obtain the highest true-positive values (479 instances) and lowest false-negative values (168 instances) in the confusion matrix. Economic income, satisfaction with life, self-esteem, teaching activity, relationship with the director, perception of living conditions, family relationships; health problems related to depression and satisfaction with the relationship with colleagues turned out to be the most important predictors of job satisfaction in basic education teachers.

Details

Title
Modeling Job Satisfaction of Peruvian Basic Education Teachers Using Machine Learning Techniques
Author
Holgado-Apaza, Luis Alberto 1   VIAFID ORCID Logo  ; Carpio-Vargas, Edgar E 2   VIAFID ORCID Logo  ; Calderon-Vilca, Hugo D 3   VIAFID ORCID Logo  ; Maquera-Ramirez, Joab 1   VIAFID ORCID Logo  ; Ulloa-Gallardo, Nelly J 1   VIAFID ORCID Logo  ; Acosta-Navarrete, María Susana 4   VIAFID ORCID Logo  ; José Miguel Barrón-Adame 4   VIAFID ORCID Logo  ; Quispe-Layme, Marleny 5   VIAFID ORCID Logo  ; Hidalgo-Pozzi, Rossana 6   VIAFID ORCID Logo  ; Valles-Coral, Miguel 7   VIAFID ORCID Logo 

 Departamento Académico de Ingeniería de Sistemas e Informática, Escuela Profesional de Ingeniería de Sistemas e Informática, Facultad de Ingeniería, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado 17001, Peru 
 Departamento Académico de Estadística e Informática, Escuela Profesional de Ingeniería Estadística e Informática, Facultad de Estadística e Informática, Universidad Nacional del Altiplano, Puno 21001, Peru 
 Departamento de Ingeniería de Software, Escuela de Ingeniería de Software, Facultad de Ingeniería de Sistemas e Informática, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru 
 Researcher Committee, Technological University of Southwest of Guanajuato, Guanajuato 38400, Mexico[email protected] (J.M.B.-A.) 
 Departamento Académico de Contabilidad y Administración, Escuela Profesional de Contabilidad y Finanzas, Facultad de Ecoturismo, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado 17001, Peru 
 Departamento Académico de Ciencias Económicas, Facultad de Ciencias Económicas, Universidad Nacional de San Martín, Tarapoto 22200, Peru; [email protected] 
 Departamento Académico de Sistemas e Informática, Facultad de Ingeniería de Sistemas e Informática, Universidad Nacional de San Martín, Tarapoto 22200, Peru 
First page
3945
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791589547
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.