Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Over the past decade, immunotherapy has represented an enormous step forward in the fight against cancer. Immunotherapeutic approaches have increasingly become a fundamental part of the combined therapies currently adopted in the treatment of patients with high-risk (HR) neuroblastoma (NB). An increasing number of studies focus on the understanding of the immune landscape in NB and, since this tumor expresses low or null levels of MHC class I, on the development of new strategies aimed at enhancing innate immunity, especially Natural Killer (NK) cells and macrophages. There is growing evidence that, within the NB tumor microenvironment (TME), tumor-associated macrophages (TAMs), which mainly present an M2-like phenotype, have a crucial role in mediating NB development and immune evasion, and they have been correlated to poor clinical outcomes. Importantly, TAM can also impair the antibody-dependent cellular cytotoxicity (ADCC) mediated by NK cells upon the administration of anti-GD2 monoclonal antibodies (mAbs), the current standard immunotherapy for HR-NB patients. This review deals with the main mechanisms regulating the crosstalk among NB cells and TAMs or other cellular components of the TME, which support tumor development and induce drug resistance. Furthermore, we will address the most recent strategies aimed at limiting the number of pro-tumoral macrophages within the TME, reprogramming the TAMs functional state, thus enhancing NK cell functions. We also prospectively discuss new or unexplored aspects of human macrophage heterogeneity.

Details

Title
Monocyte and Macrophage in Neuroblastoma: Blocking Their Pro-Tumoral Functions and Strengthening Their Crosstalk with Natural Killer Cells
Author
Vitale, Chiara 1   VIAFID ORCID Logo  ; Bottino, Cristina 2   VIAFID ORCID Logo  ; Castriconi, Roberta 1   VIAFID ORCID Logo 

 Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy 
 Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy 
First page
885
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734409
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791595056
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.