Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Bismuth vanadate (BiVO4), W-doped BiVO4 (BiVO4:W), and Mo-doped BiVO4 (BiVO4:Mo) nanoparticles were synthesized at pH = 4 using a green hydrothermal method. The effects of 2 at% W or Mo doping on the microstructural and optical characteristics of as-prepared BiVO4 nanoparticles and the effect of combining particle morphology modification and impurity dopant incorporation on the visible-light-derived photocatalytic degradation of dilute Rhodamine B (RhB) solution are studied. XRD examination revealed that these obtained BiVO4-based nanoparticles had a highly crystalline and single monoclinic phase. SEM and TEM observations showed that impurity doping could modify the surface morphology, change the particle shape, and reduce the particle diameter to enlarge their specific surface area, increasing the reactive sites of the photocatalytic process. XPS and FL measurements indicated that W- and Mo-doped nanoparticles possessed higher concentrations of oxygen vacancies, which could promote the n-type semiconductor property. It was found that the BiVO4:W and BiVO4:Mo powder samples exhibited better photocatalytic activity for efficient RhB removal than that shown by pristine BiVO4 powder samples under visible light illumination. That feature can be ascribed to the larger surface area and improved concentration of photogenerated charge carriers of the former.

Details

Title
Enhanced Photocatalytic Performance of Visible-Light-Driven BiVO4 Nanoparticles through W and Mo Substituting
Author
Chien-Yie Tsay 1   VIAFID ORCID Logo  ; Ching-Yu, Chung 1 ; Chin-Yi, Chen 1   VIAFID ORCID Logo  ; Yu-Cheng, Chang 1   VIAFID ORCID Logo  ; Chi-Jung, Chang 2   VIAFID ORCID Logo  ; Wu, Jerry J 3 

 Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan 
 Department of Chemical Engineering, Feng Chia University, Taichung 40724, Taiwan 
 Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724, Taiwan 
First page
475
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791598668
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.