Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

An automatic hole-cutting method is proposed to search donor cells between a structured Cartesian mesh and an overlapping body-fitted mesh. The main flow is simulated on the structured Cartesian mesh and the viscous flow near the solid boundary is simulated on the body-fitted mesh. Through the spatial interpolation of flux, the surface boundary information on the body-fitted mesh is transferred to the Cartesian mesh nodes near the surface. Cartesian mesh box near a body-fitted mesh cell is selected as a local inverse map. The Cartesian nodes located inside the donor cells are marked by the relative coordinate transformation, so that all Cartesian nodes can be classified and the hole boundaries are implicitly cut. This hole-cutting process for overset grid assembly is called Local Inverse Mapping (LIM) method. In the LIM method, spatial interpolation of flux is carried out synchronously with the marking of Cartesian nodes. The LIM method is combined with the in-house finite-difference solver to simulate the unsteady flow field of moving bodies. The numerical results show that the LIM method can accurately mark the Cartesian hole boundary nodes, the search efficiency of donor cells is high, and the result of spatial interpolation is accurate. The calculation time of overset grid assembly (OGA) can be less than 3% of the total simulation time.

Details

Title
Local Inverse Mapping Implicit Hole-Cutting Method for Structured Cartesian Overset Grid Assembly
Author
Wang, Jingyuan 1   VIAFID ORCID Logo  ; Wu, Feng 2 ; Xu, Quanyong 3 ; Tan, Lei 1   VIAFID ORCID Logo 

 State Key Laboratory of HydroScience and Engineering, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China 
 AECC Sichuan Gas Turbine Establishment, Mianyang 621000, China 
 Institute for Aero Engine, Tsinghua University, Beijing 100084, China 
First page
432
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
10994300
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791644554
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.