Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The article discusses the new technique for fracture closure pressure detection using continuous wavelet transform (CWT). The study focuses on calibrating the CWT technique and comparing it with different techniques for closure detection. According to the article, traditional methods for identifying the closure of hydraulic fracturing operations are based on assumptions that can conflict with one another, resulting in greatly varying approximations of closure pressure and duration. To address this issue, the article employs a set of diagnostic fracture injection tests that utilize the Step-Rate Injection Method for Fracture In-Situ Properties tool (SIMFIP). By directly observing wellbore deformation, the SIMFIP tool determines the minimum principal stress, while strain gauges monitor the opening and closing of fractures during multiple tests. The publicly accessible data are used to evaluate the accuracy of the new closure detection technique using CWT. The findings indicate that the CWT method aligns with measurements of deformation and can identify the impact of intricate closure events and pre-existing natural fractures. In conclusion, the article suggests that the CWT technique shows great potential as an alternative to traditional approaches for detecting closure pressure.

Details

Title
Validation of Estimating Stress from Fracture Injection Tests Using Continuous Wavelet Transform with Experimental Data
Author
Mohamed Adel Gabry  VIAFID ORCID Logo  ; Ibrahim Eltaleb  VIAFID ORCID Logo  ; Soliman, Mohamed Y  VIAFID ORCID Logo  ; Farouq-Ali, S M  VIAFID ORCID Logo 
First page
2807
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791648395
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.