Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Shallow landslides due to hydro-meteorological factors are one of the most common destructive geological processes, which have become more frequent in recent years due to changes in rainfall frequency and intensity. The present study assessed a dynamic, physically based slope stability model, Transient Rainfall Infiltration and Grid-Based Slope Stability Model (TRIGRS), in Idukki district, Kerala, Western Ghats. The study compared the impact of hydrogeomechanical parameters derived from two different data sets, FAO soil texture and regionally available soil texture, on the simulation of the distribution and timing of shallow landslides. For assessing the landslide distribution, 1913 landslides were compared and true positive rates (TPRs) of 68% and 60% were obtained with a nine-day rainfall period for the FAO- and regional-based data sets, respectively. However, a false positive rate (FPR) of 36% and 31% was also seen, respectively. The timing of occurrence of nine landslide events was assessed, which were triggered in the second week of June 2018. Even though the distribution of eight landslides was accurately simulated, the timing of only three events was found to be accurate. The study concludes that the model simulations using parameters derived from either of the soil texture data sets are able to identify the location of the event. However, there is a need for including a high-spatial-resolution hydrogeomechanical parameter data set to improve the timing of landslide event modeling.

Details

Title
Assessment of a Dynamic Physically Based Slope Stability Model to Evaluate Timing and Distribution of Rainfall-Induced Shallow Landslides
Author
Juby, Thomas 1 ; Gupta, Manika 1 ; Srivastava, Prashant K 2   VIAFID ORCID Logo  ; Petropoulos, George P 3   VIAFID ORCID Logo 

 Department of Geology, University of Delhi, Delhi 110007, India 
 Remote Sensing Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, India 
 Department of Geography, Harokopio University of Athens, El. Venizelou 70, 17671 Athens, Greece 
First page
105
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22209964
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791651279
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.