Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Rotavirus A (RVA) genome segments can reassort upon co-infection of target cells with two different RVA strains. However, not all reassortants are viable, which limits the ability to generate customized viruses for basic and applied research. To gain insight into the factors that restrict reassortment, we utilized reverse genetics and tested the generation of simian RVA strain SA11 reassortants carrying the human RVA strain Wa capsid proteins VP4, VP7, and VP6 in all possible combinations. VP7-Wa, VP6-Wa, and VP7/VP6-Wa reassortants were effectively rescued, but the VP4-Wa, VP4/VP7-Wa, and VP4/VP6-Wa reassortants were not viable, suggesting a limiting effect of VP4-Wa. However, a VP4/VP7/VP6-Wa triple-reassortant was successfully generated, indicating that the presence of homologous VP7 and VP6 enabled the incorporation of VP4-Wa into the SA11 backbone. The replication kinetics of the triple-reassortant and its parent strain Wa were comparable, while the replication of all other rescued reassortants was similar to SA11. Analysis of the predicted structural protein interfaces identified amino acid residues, which might influence protein interactions. Restoring the natural VP4/VP7/VP6 interactions may therefore improve the rescue of RVA reassortants by reverse genetics, which could be useful for the development of next generation RVA vaccines.

Details

Title
Strain-Specific Interactions between the Viral Capsid Proteins VP4, VP7 and VP6 Influence Rescue of Rotavirus Reassortants by Reverse Genetics
Author
Roman Valusenko-Mehrkens; Gadicherla, Ashish K; Johne, Reimar  VIAFID ORCID Logo  ; Falkenhagen, Alexander
First page
5670
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791655104
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.