Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Bacterial surface motility is a complex microbial trait that contributes to host colonization. However, the knowledge about regulatory mechanisms that control surface translocation in rhizobia and their role in the establishment of symbiosis with legumes is still limited. Recently, 2-tridecanone (2-TDC) was identified as an infochemical in bacteria that hampers microbial colonization of plants. In the alfalfa symbiont Sinorhizobium meliloti, 2-TDC promotes a mode of surface motility that is mostly independent of flagella. To understand the mechanism of action of 2-TDC in S. meliloti and unveil genes putatively involved in plant colonization, Tn5 transposants derived from a flagellaless strain that were impaired in 2-TDC-induced surface spreading were isolated and genetically characterized. In one of the mutants, the gene coding for the chaperone DnaJ was inactivated. Characterization of this transposant and newly obtained flagella-minus and flagella-plus dnaJ deletion mutants revealed that DnaJ is essential for surface translocation, while it plays a minor role in swimming motility. DnaJ loss-of-function reduces salt and oxidative stress tolerance in S. meliloti and hinders the establishment of efficient symbiosis by affecting nodule formation efficiency, cellular infection, and nitrogen fixation. Intriguingly, the lack of DnaJ causes more severe defects in a flagellaless background. This work highlights the role of DnaJ in the free-living and symbiotic lifestyles of S. meliloti.

Details

Title
Sinorhizobium meliloti DnaJ Is Required for Surface Motility, Stress Tolerance, and for Efficient Nodulation and Symbiotic Nitrogen Fixation
Author
Brito-Santana, Paula 1 ; Duque-Pedraza, Julián J 1 ; Bernabéu-Roda, Lydia M 1 ; Carvia-Hermoso, Cristina 1 ; Cuéllar, Virginia 1   VIAFID ORCID Logo  ; Fuentes-Romero, Francisco 2   VIAFID ORCID Logo  ; Acosta-Jurado, Sebastián 3 ; José-María Vinardell 2   VIAFID ORCID Logo  ; Soto, María J 1   VIAFID ORCID Logo 

 Estación Experimental del Zaidín, CSIC, Department of Biotechnology and Environmental Protection, 18008 Granada, Spain 
 Facultad de Biología, Departamento de Microbiología, Universidad de Sevilla, 41012 Sevilla, Spain 
 Centro Andaluz de Biología del Desarrollo, CSIC, Junta de Andalucía, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, 41013 Seville, Spain 
First page
5848
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791655388
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.