Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To investigate the formation mechanism of the white layer on the machined surface during high-speed milling of nickel-based superalloy GH4169, several cutting parameters were selected for milling experiments. Energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and electron backscattered diffraction (EBSD) were employed to characterize element distribution, phase transformation, and microstructure changes in the machined surface of the superalloy and then reveal the formation mechanism of the white layer on the machined surface. The results show that the white layer appears on the machined surface of GH4169, which is dense and has no obvious structural features. The total amount of elements in the white layer remains unchanged, but the distribution of elements such as C, N, O, Fe, and Ni changes due to phase change. The formation mechanism of the white layer is due to the dynamic recovery and dynamic recrystallization caused by the heat–force coupling effect, which leads to the grain refinement of the material and thus forms the white layer. This investigation can provide theoretical support to improve the service life of the parts in actual machining.

Details

Title
Investigation on White Layer Formation in Dry High-Speed Milling of Nickel-Based Superalloy GH4169
Author
Zhang, Jiamao 1 ; Du, Jin 1 ; Li, Binxun 1 ; Su, Guosheng 1 

 School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China; Shandong Institute of Mechanical Design and Research, Jinan 250300, China 
First page
406
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20751702
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791669064
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.