Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Basic oxygen furnace slag (BOFS) is a waste material generated during the steelmaking process and has the potential to harm both the environment and living organisms when disposed of in a landfill. However, the cementitious properties of BOFS might help in utilizing this waste as an alternative material in alkali-activated systems. Therefore, in this study, BOFS and blast furnace slag were activated with varying dosages of NaOH, and the fresh, physical, mechanical, and microstructural properties were determined along with statistical analysis to reach the optimal mix design. The test results showed that an increase in BOFS content decreased compressive and flexural strengths, whereas it slightly increased the water absorption and permeable pores of the tested mortar samples. On the contrary, the increase in NaOH molarity resulted in a denser microstructure, reduced water absorption and permeable pores, and improved mechanical properties. Statistically significant relationships were obtained through response surface methodology with optimal mix proportions, namely, (i) 24.61% BOFS and 7.74 M and (ii) 20.00% BOFS and 8.90 M, which maximize the BOFS content with lower molarity and improve the mechanical properties with lower water absorption and porosity, respectively. The proposed methodology maximizes the utilization of waste BOFS in alkali-activated systems and may promote environmental and economic benefits.

Details

Title
Experimental and Statistical Study on the Properties of Basic Oxygen Furnace Slag and Ground Granulated Blast Furnace Slag Based Alkali-Activated Mortar
Author
Özkan, Hakan 1   VIAFID ORCID Logo  ; Miyan, Nausad 2 ; Kabay, Nihat 3   VIAFID ORCID Logo  ; Omur, Tarik 3   VIAFID ORCID Logo 

 Oyak Cement Concrete Paper Group/Betâo Liz SA, 1099-020 Lisbon, Portugal; Department of Civil Engineering, Yildiz Technical University, Istanbul 34220, Turkey 
 LBA Design and Consultancy, Istanbul 34750, Turkey 
 Department of Civil Engineering, Yildiz Technical University, Istanbul 34220, Turkey 
First page
2357
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791673046
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.