Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The influenza A virus is highly contagious and often causes global pandemics. The prevalence of strains of the influenza A virus that are resistant to approved drugs is a huge challenge for the current clinical treatment of influenza A. RNA polymerase is a pivotal enzyme in the replication of the influenza A virus, and it is a promising target for anti-influenza A therapies. In this paper, we report a novel and potent anti-influenza-A-virus inhibitor, ZSP1273, targeting the influenza A virus RNA polymerase, especially for multidrug-resistant strains. The inhibitory activity of ZSP1273 on RNA polymerase activity was 0.562 ± 0.116 nM (IC50 value), which was better than that of the clinical candidate compound VX-787 with the same target. In vitro, the EC50 values of ZSP1273 on normal influenza A virus strains (i.e., H1N1 and H3N2) varied from 0.01 nM to 0.063 nM, which were better than those of the licensed drug oseltamivir. Moreover, oseltamivir-resistant strains, baloxavir-resistant strains, and highly pathogenic avian influenza strains were also sensitive to ZSP1273. In vivo, ZSP1273 effectively reduced influenza A virus titers in a dose-dependent manner in a murine model and maintained a high survival rate in mice. In addition, the inhibitory activity of ZSP1273 on influenza A virus infection was also observed in a ferret model. Pharmacokinetic studies showed the favorable pharmacokinetic characteristics of ZSP1273 in mice, rats, and beagle dogs after single-dose and continuous multiple-dose administration. In conclusion, ZSP1273 is a highly effective anti-influenza A virus replication inhibitor, especially against multidrug-resistant strains. ZSP1273 is currently being studied in phase III clinical trials.

Details

Title
Preclinical Study of ZSP1273, a Potent Antiviral Inhibitor of Cap Binding to the PB2 Subunit of Influenza A Polymerase
Author
Chen, Xiaoxin 1 ; Ma, Qinhai 2 ; Zhao, Manyu 3 ; Yao, Yuqin 3   VIAFID ORCID Logo  ; Zhang, Qianru 4 ; Liu, Miao 3 ; Yang, Zifeng 2 ; Deng, Wenbin 1   VIAFID ORCID Logo 

 School of Pharmaceutical Science (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China 
 State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510030, China 
 Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China 
 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China 
First page
365
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248247
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791698125
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.