Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The automatic extraction of individual tree from mobile laser scanning (MLS) scenes has important applications in tree growth monitoring, tree parameter calculation and tree modeling. However, trees often grow in rows and tree crowns overlap with varying shapes, and there is also incompleteness caused by occlusion, which makes individual tree extraction a challenging problem. In this paper, we propose a trunk-constrained and tree structure analysis method to extract trees from scanned urban scenes. Firstly, multi-feature enhancement is performed via PointNet to segment the tree points from raw urban scene point clouds. Next, the candidate local tree trunk clusters are obtained by clustering based on the intercepted local tree trunk layer, and the real local tree trunk is obtained by removing noise data. Then, the trunk is located and extracted by combining circle fitting and region growing, so as to obtain the center of the tree crown. Further, the points near the tree’s crown (core points) are segmented through distance difference, and the tree crown boundary (boundary points) is distinguished by analyzing the density and centroid deflection angle. Therefore, the core and boundary points are deleted to obtain the remaining points (intermediate points). Finally, the core, intermediate and boundary points, as well as the tree trunks, are combined to extract individual tree. The performance of the proposed method was evaluated on the Pairs-Lille-3D dataset, which is a benchmark for point cloud classification, and data were produced using a mobile laser system (MLS) applied to two different cities in France (Paris and Lille). Overall, the precision, recall, and F1-score of instance segmentation were 90.00%, 98.22%, and 99.08%, respectively. The experimental results demonstrate that our method can effectively extract trees with multiple rows of occlusion and improve the accuracy of tree extraction.

Details

Title
Trunk-Constrained and Tree Structure Analysis Method for Individual Tree Extraction from Scanned Outdoor Scenes
Author
Ning, Xiaojuan 1 ; Ma, Yishu 2 ; Hou, Yuanyuan 2 ; Lv, Zhiyong 1 ; Jin, Haiyan 1   VIAFID ORCID Logo  ; Wang, Zengbo 3 ; Wang, Yinghui 4 

 Institute of Computer Science and Engineering, Xi’an University of Technology, No. 5 South of Jinhua Road, Xi’an 710048, China; [email protected] (X.N.); [email protected] (Y.M.); [email protected] (Y.H.); [email protected] (Z.L.); [email protected] (H.J.); Shaanxi Key Laboratory of Network Computing and Security Technology, Xi’an 710048, China 
 Institute of Computer Science and Engineering, Xi’an University of Technology, No. 5 South of Jinhua Road, Xi’an 710048, China; [email protected] (X.N.); [email protected] (Y.M.); [email protected] (Y.H.); [email protected] (Z.L.); [email protected] (H.J.) 
 College of Mathematics and Statistics, Hengyang Normal University, Hengyang 421002, China 
 School of Artificial Intelligence and Computer Science, Jiangnan University, 1800 of Lihu Road, Wuxi 214122, China; [email protected] 
First page
1567
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791699199
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.