Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In recent years, the number of super high-rise buildings is increasing due to the rapid development of economy and construction technology. It is important to evaluate the health condition of super high-rise buildings to make them operate safely. However, conventional structural health monitoring (SHM) system requires a great number of wires to connect the sensors, power sources, and the data acquisition equipment, which is an extremely difficult process to plan the layout of all wires. Hence, one of the usually used compromising approaches is to limit the number of sensors to reduce the usage of wires. Recently, wireless sensor networks and cloud platform have been widely used in SHM system for super high-rise buildings because of their convenient installation, low maintenance cost, and flexible deployment. This paper presents a comprehensive review of the existing SHM system for super high-rise buildings based on wireless sensor network and cloud platform, which usually consists of sensing network subsystem, data acquisition subsystem, data transmission subsystem, and condition evaluation subsystem. This paper also reviews the crucial techniques and typical examples of SHM system used for famous super high-rise buildings. In addition, the existing difficulties in wireless sensor network and cloud platform based SHM system for super high-rise buildings and the future research directions are discussed and summarized.

Details

Title
Research Progress of SHM System for Super High-Rise Buildings Based on Wireless Sensor Network and Cloud Platform
Author
Yang, Yang 1   VIAFID ORCID Logo  ; Xu, Wenming 1 ; Gao, Zhihao 1 ; Zhou, Yu 2 ; Zhang, Yao 3 

 School of Civil Engineering, Chongqing University, Chongqing 400044, China 
 MCC Saidi Engineering Technology Co., Ltd., Chongqing 400013, China 
 School of Architecture and Civil Engineering, Xiamen University, Xiamen 361005, China 
First page
1473
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791699745
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.