Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, a core-shell based on the Fe3O4@SiO2@Au nanoparticle amplification technique for a surface plasmon resonance (SPR) sensor is proposed. Fe3O4@SiO2@AuNPs were used not only to amplify SPR signals, but also to rapidly separate and enrich T-2 toxin via an external magnetic field. We detected T-2 toxin using the direct competition method in order to evaluate the amplification effect of Fe3O4@SiO2@AuNPs. A T-2 toxin–protein conjugate (T2-OVA) immobilized on the surface of 3-mercaptopropionic acid-modified sensing film competed with T-2 toxin to combine with the T-2 toxin antibody–Fe3O4@SiO2@AuNPs conjugates (mAb-Fe3O4@SiO2@AuNPs) as signal amplification elements. With the decrease in T-2 toxin concentration, the SPR signal gradually increased. In other words, the SPR response was inversely proportional to T-2 toxin. The results showed that there was a good linear relationship in the range of 1 ng/mL~100 ng/mL, and the limit of detection was 0.57 ng/mL. This work also provides a new possibility to improve the sensitivity of SPR biosensors in the detection of small molecules and in disease diagnosis.

Details

Title
Surface Plasmon Resonance Sensor Based on Core-Shell Fe3O4@SiO2@Au Nanoparticles Amplification Effect for Detection of T-2 Toxin
Author
Fan, Lirui 1 ; Du, Bin 2 ; Fubin Pei 2 ; Hu, Wei 2 ; Guo, Aijiao 2 ; Xie, Zihao 2 ; Liu, Bing 2 ; Tong, Zhaoyang 2 ; Mu, Xihui 2 ; Tan, Wenyuan 3 

 School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China 
 State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China 
 School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China 
First page
3078
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791700289
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.