Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Localization is a crucial skill in mobile robotics because the robot needs to make reasonable navigation decisions to complete its mission. Many approaches exist to implement localization, but artificial intelligence can be an interesting alternative to traditional localization techniques based on model calculations. This work proposes a machine learning approach to solve the localization problem in the RobotAtFactory 4.0 competition. The idea is to obtain the relative pose of an onboard camera with respect to fiducial markers (ArUcos) and then estimate the robot pose with machine learning. The approaches were validated in a simulation. Several algorithms were tested, and the best results were obtained by using Random Forest Regressor, with an error on the millimeter scale. The proposed solution presents results as high as the analytical approach for solving the localization problem in the RobotAtFactory 4.0 scenario, with the advantage of not requiring explicit knowledge of the exact positions of the fiducial markers, as in the analytical approach.

Details

Title
A Machine Learning Approach to Robot Localization Using Fiducial Markers in RobotAtFactory 4.0 Competition
Author
Klein, Luan C 1   VIAFID ORCID Logo  ; Braun, João 2   VIAFID ORCID Logo  ; Mendes, João 3   VIAFID ORCID Logo  ; Pinto, Vítor H 4   VIAFID ORCID Logo  ; Martins, Felipe N 5   VIAFID ORCID Logo  ; Schneider de Oliveira, Andre 6   VIAFID ORCID Logo  ; Wörtche, Heinrich 7   VIAFID ORCID Logo  ; Costa, Paulo 8   VIAFID ORCID Logo  ; Lima, José 9   VIAFID ORCID Logo 

 Department of Electronics (DAELN), Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba 80230-901, Brazil; [email protected] (L.C.K.); [email protected] (A.S.d.O.); Research Center in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; [email protected] (J.B.); [email protected] (J.M.); [email protected] (J.L.) 
 Research Center in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; [email protected] (J.B.); [email protected] (J.M.); [email protected] (J.L.); Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; [email protected] (V.H.P.); [email protected] (P.C.); INESC Technology and Science, 4200-465 Porto, Portugal 
 Research Center in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; [email protected] (J.B.); [email protected] (J.M.); [email protected] (J.L.); Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; ALGORITMI Center, University of Minho, 4710-057 Braga, Portugal 
 Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; [email protected] (V.H.P.); [email protected] (P.C.); SYSTEC (DIGI2)—Research Center for Systems and Technologies (Digital and Intelligent Industry Lab), 4200-465 Porto, Portugal 
 Sensors and Smart Systems Group, Institute of Engineering, Hanze University of Applied Sciences, 9747 AS Groningen, The Netherlands; [email protected] 
 Department of Electronics (DAELN), Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba 80230-901, Brazil; [email protected] (L.C.K.); [email protected] (A.S.d.O.) 
 Sensors and Smart Systems Group, Institute of Engineering, Hanze University of Applied Sciences, 9747 AS Groningen, The Netherlands; [email protected]; Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands 
 Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; [email protected] (V.H.P.); [email protected] (P.C.); INESC Technology and Science, 4200-465 Porto, Portugal 
 Research Center in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; [email protected] (J.B.); [email protected] (J.M.); [email protected] (J.L.); Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; INESC Technology and Science, 4200-465 Porto, Portugal 
First page
3128
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791700363
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.