Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

V2P (vehicle-to-pedestrian) communication can improve road traffic efficiency, solve traffic congestion, and improve traffic safety. It is an important direction for the development of smart transportation in the future. Existing V2P communication systems are limited to the early warning of vehicles and pedestrians, and do not plan the trajectory of vehicles to achieve active collision avoidance. In order to reduce the adverse effects on vehicle comfort and economy caused by switching the “stop–go” state, this paper uses a PF (particle filter) to preprocess GPS (Global Positioning System) data to solve the problem of poor positioning accuracy. An obstacle avoidance trajectory-planning algorithm that meets the needs of vehicle path planning is proposed, which considers the constraints of the road environment and pedestrian travel. The algorithm improves the obstacle repulsion model of the artificial potential field method, and combines it with the A* algorithm and model predictive control. At the same time, it controls the input and output based on the artificial potential field method and vehicle motion constraints, so as to obtain the planned trajectory of the vehicle’s active obstacle avoidance. The test results show that the vehicle trajectory planned by the algorithm is relatively smooth, and the acceleration and steering angle change ranges are small. Based on ensuring safety, stability, and comfort in vehicle driving, this trajectory can effectively prevent collisions between vehicles and pedestrians and improve traffic efficiency.

Details

Title
Active Obstacle Avoidance Trajectory Planning for Vehicles Based on Obstacle Potential Field and MPC in V2P Scenario
Author
Pan, Ruoyu 1   VIAFID ORCID Logo  ; Lihua Jie 1   VIAFID ORCID Logo  ; Zhao, Xinyu 1 ; Wang, Honggang 1 ; Yang, Jingfeng 2   VIAFID ORCID Logo  ; Song, Jiwei 3 

 School of Communications and Information Engineering and School of Artificial Intelligence, Xi’an University of Posts and Telecommunications, Xi’an 710121, China 
 Guangzhou Institute of Industrial Intelligence, Guangzhou 511458, China 
 China Electronics Standardization Institute, Beijing 100007, China 
First page
3248
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791739526
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.