It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
To design a framework for effective prediction of heart disease based on ensemble techniques, without the need of feature selection, incorporating data balancing, outlier detection and removal techniques, with results that are still at par with cutting-edge research. In this study, the Cleveland dataset, which has 303 occurrences, is used from the UCI repository. The dataset comprises 76 raw attributes, however only 14 of them are listed by the UCI repository as significant risk factors for heart disease when the dataset is uploaded as an open source dataset. Data balancing strategies, such as random over sampling, are used to address the issue of unbalanced data. Additionally, an isolation forest is used to find outliers in multivariate data, which has not been explored in previous research. After eliminating anomalies from the data, ensemble techniques such as bagging, boosting, voting, stacking are employed to create the prediction model. The potential of the proposed model is assessed for accuracy, sensitivity, and specificity, positive prediction value (PPV), negative prediction value (NPV), F1 score, ROC-AUC and model training time. For the Cleveland dataset, the performance of the suggested methodology is superior, with 98.73% accuracy, 98% sensitivity, 100% specificity, 100% PPV, 97% NPV, 1 as F score, and AUC as 1 with comparatively very less training time. The results of this study demonstrate that our proposed approach significantly outperforms the existing scholarly work in terms of accuracy and all the stated performance metrics. No earlier research has focused on these many performance parameters.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer