It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Traces of body fluids discovered at a crime scene are a primary source of DNA evidence. Raman spectroscopy is a promising universal technique for identifying biological stains for forensic purposes. The advantages of this method include the ability to work with trace amounts, high chemical specificity, no need for sample preparation and the nondestructive nature. However, common substrate interference limits the practical application of this novel technology. To overcome this limitation, two approaches called "Reducing a spectrum complexity" (RSC) and "Multivariate curve resolution combined with the additions method" (MCRAD) were investigated for detecting bloodstains on several common substrates. In the latter approach, the experimental spectra were “titrated” numerically with a known spectrum of a targeted component. The advantages and disadvantages of both methods for practical forensics were evaluated. In addition, a hierarchical approach to reduce the possibility of false positives was suggested.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Tomsk State University, Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk, Russia (GRID:grid.77602.34) (ISNI:0000 0001 1088 3909)
2 University at Albany, SUNY, Department of Chemistry, Albany, USA (GRID:grid.265850.c) (ISNI:0000 0001 2151 7947)