Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The inability to meet and ensure as many requirements as possible is fully justified by the continuous interest in obtaining new multifunctional materials. A new cryogel system based on poly(vinyl alcohol) (PVA) and poly(ethylene brassylate-co-squaric acid) (PEBSA) obtained by repeated freeze–thaw processes was previously reported and used for the incorporation of an antibacterial essential oil—namely, thymol (Thy). Furthermore, the present study aims to confer antioxidant properties to the PVA/PEBSA_Thy system by encapsulating α-tocopherol (α-Tcp), targeting a double therapeutic effect due to the presence of both bioactive compounds. The amphiphilic nature of the PEBSA copolymer allowed for the encapsulation of both Thy and α-Tcp, via an in situ entrapment method. The new PVA/PEBSA_Thy_α-Tcp systems were characterized in terms of their influence on the composition, network morphology and release profiles, as well as their antimicrobial and antioxidant properties. The study underlined the cumulative antioxidant efficiency of Thy and α-Tcp, which in combination with the PEBSA copolymer have a synergistic effect (97.1%). We believe that the convenient and simple strategy offered in this study increases applicability for these new PVA/PEBSA_Thy_α-Tcp cryogel systems.

Details

Title
Cryogel System Based on Poly(vinyl alcohol)/Poly(ethylene brassylate-co-squaric acid) Platform with Dual Bioactive Activity
Author
Bianca-Elena-Beatrice Crețu 1 ; Rusu, Alina Gabriela 1   VIAFID ORCID Logo  ; Ghilan, Alina 1 ; Rosca, Irina 2   VIAFID ORCID Logo  ; Nita, Loredana Elena 1 ; Chiriac, Aurica P 1   VIAFID ORCID Logo 

 Department of Natural Polymers, Bioactive and Biocompatible Materials, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania 
 Center of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania 
First page
174
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23102861
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2794660720
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.